
Chapter 7
STATE VARIABLE CONTROL SYNTHESIS

This chapter solves the problem to synthesize the control system, that satisfies given
specifications, in the state space domain. The extended systems representing the prob-
lem complete in this chapter the schemas of chapter 5, covering a full envelop of speci-
fications. The approach is introduced using the prototypes of a few significant use cases.
The first prototype approaches the basic requirement of the loop sensitivity function. It
considers the output disturbance rejection. The second problem add to the first one con-
straints on the control activity. The third prototype integrates uncertainty specifications
to requirements, approaching a problem of robust performances. The last example, fi-
nally, introduces along with the loop also reference-output specifications in a two degree
of freedom design.
The design of the control is divided in its two fundamental components: state observer
and state feedback. This decomposition introduces naturally an abstract model, repre-
sentative of the system, its uncertainties and its requirements: the black box model dis-
cussed at the beginning of the book.
We already know that the structure observer-feedback generates with simplicity the class
of all controllers guaranteeing internal stability of the loop (figure 4.21), we will show
here that the same structure, with a few modifications, will also be able to guarantee a
bound on the ∞H  norm of the extended system in closed loop. And this characteristics,
on turn,  allow to satisfy the desired specifications of the control problem.  The process
of design is translated in the solution of two linked problems of state feedback: one for
the observer and one for the control.  Both problems are approached by operating on the
gramians of the closed loop with the aim to make the state space of the closed loop sys-
tem as more unobservable as possible from the objective estimation errors, and uncon-
trollable from the external disturbances.
Results of this chapter refer to the books [1] and [2]. For an elemental treatise see also
[3].
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7.1 A review of basic closed loop requirements

7.1.1 Reducing sensitivity to output disturbances

Classical specifications require to reduce sensitivity on the controlled output of output
disturbances. A description of the dynamics of disturbances, the assignment of a
weighting function on the objectives or both define the specifications

Fig. 7.1 Specification on disturbance sensitivity

7.1.2 Control activity and measure noise

Previous model doesn’t take into account control activity as well as noise on the output
measures. The two aspects are inextricably linked each other. The control activity that
concerns the designer has normally two origins: transients in response to reference
tracking or measurement noises. Both causes affect control in the high frequency range.
We have not considered here effects to process disturbances, as these cover a lower
frequency spectra and usually doesn’t create situations of excessive control activity.
As we want to guarantee that the control has not excessive amplitude in all frequency
range, in particular high frequency, it is necessary that the weight of the control, as an
objective is a proper dynamical operator or a pure gain. Dually, as measure noises are
characterized by high frequency components, it is necessary that the filter describing its
dynamics is proper or a pure gain.  We extend previous example adding control activity
specifications.
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Fig. 7.2 Requirements on control activity

7.1.3 Multiplicative plant uncertainty

Let further extend the last model adding to performance uncertainty specifications.  This
example consider multiplicative uncertainty, but according to the needs any other of the
schemes introduced in section 5.1.3 can be adopted.

Fig. 7.3 Uncertainty in multiplicative form
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7.1.4 A two degree of freedom design

We add to loop specifications of figure 7.3 also reference-output requirements. We
assume, along with process outputs, to have independent measures of the reference.

eqdesG  is the desired closed loop function and represents the reference model we want to
match with the closed the loop.

Fig. 7.4 Requirements on reference tracking

The resulting controller will be composed of two parts: a feed-forward block cruG  from
the reference to the control and a feedback block cyuG  from the system output to the
control in a two degree configuration, as shown in figure 4.8 of chapter 4.

7.2 The extended system

From previous considerations the most general state variable representation of an ex-
tended system assumes the following form

�

�
�
�

�

�

⋅
�
�
�
�

�
�
�

�

�

=
�
�
�
�

�
�
�

�

�

u
w
x

DC
DDC
BBA

y
z
x

0212

12111

21�

. (7.1)

21D  takes into account the presence of high frequency noise on measures, and dually

12D  for high frequency weights of the control activity. 11D  may or may not be present
according to the problem. For simplicity, in the first part of this chapter we will consider
the simplifying assumption 011 =D
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leaving the general case to a concluding section.
Moreover, imposing that each measure is affected by an independent noise and each
control receives separately control activity specifications, we require that the extended
system satisfies also the following conditions
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If these conditions are not originally satisfied from the extended system of the desired
problem, proper transformations on inputs and measures vectors can be found that bring
to (7.3).
The objective of the problem is the design of a controller closing the loop from y to u
that guarantees an upper bound to the norm of the extended system disturbances objec-
tives w-z in closed loop. As the gains of the weights can be arbitrarily chosen from the
designer, by properly selecting these gains, conventionally the bound that indicates re-
quirement satisfactions is always assumed equal to one.

7.3 Two prototypes of control

We have seen that state observer and state feedback play an important role in the design
of a control.
We endorse this two steps design procedure. In our interpretation, the observer defines
the black box model which input is the control input, the disturbance is observer output
reconstruction error, the objectives are the observer estimated objectives and the states
are directly available for closing the loop. This model, under certain conditions is
equivalent, from the point of view of control performances, to the original system.
The design of the control of this black box model, using state feedback, fixes a reference
for the behavior we desire from our closed loop system. The observer, from which the
black box model was generated, guarantees, with its performances, that the controlled
system actually tracks this reference.
Hence, before approaching the complete problem to design an output feedback control
we study preliminarily the two sub-problems that compose it offering two dual interpre-
tations of the liaisons between them.

7.3.1 State feedback

The most simple case of control, and certainly the most effective, from the point of view
of reachable performances, is when all external disturbances and all states are perfectly
known. This problem is called in the literature control with total information, and the
extended system that represents it assumes the following special form:
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We have already seen in chapter 4 conditions to guarantee stability and impose closed
loop poles by state feedback

Hxu −= . (7.5)

In the design phase, along with stability, we ask to the control to satisfy specifications
expressed by the value assumed by the closed loop norm of the operator w-z.
It is well documented in any text of optimum control that with perfect knowledge of all
states and with performances measured by a square norm of the closed loop operator the
best control is an algebraic feedback from the states. Moreover, this performance can be
improved by adding to the control an algebraic function of the disturbances only if these
disturbances are directly present in the objectives, i.e. 011 ≠D .
Let recall from chapter (7.5) that the closed loop operator with a feedback of the type
(7.5) assumes the following form
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We note that the design parameter H is present in the matrices that form the observabil-
ity gramian of the closed loop operator. We already know that this gramian plays a fun-
damental role either to minimize the 2H  norm of the operator (7.6), or to guarantee an
upper bound of the ∞H  norm of the same operator, indicated here as

czw sG γ≤
∞→ )( .

7.3.2 Output estimation

The second problem of interest is called output estimation. It is dual of the previous one
and is formulated, again, as a control problem with an extended system with the follow-
ing special form, where matrix 12D  is the identity:
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Interpretation of this problem, already introduced in chapter 4, is the following: y are the
measure on the process, xC1−  is an unmeasurable system output we want to estimate
and u is its estimate we want to design, with the objective to guarantee a small estima-
tion error uxCz += 1 . The presence of the signal u in input to the process through the
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matrix 2B  is a slight generalization with respect to the classical state estimation prob-
lem, that doesn’t modifies significantly standard results13.
The solution of the problem is the classical state estimator
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with a filter that generates u from y of the form
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obtained performing the proper substitutions in (7.8), and error model given by
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In particular, from (7.10) the operator between disturbances and estimation error is
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If you compare the dual of the operator (7.11) with (7.6) you see that the two problems
of state estimation and state feedback are perfectly dual. Remembering that 2H  and

∞H  norms of a dynamical operator and of its transpose are identical, techniques of
design, with the objective to minimize or guarantee an upper bound of the closed loop
operator are the same in the two cases.
The design requires to compute a feedback K for the observer which minimizes the norm
of the operator (7.11).
The same considerations exposed for state feedback apply here. A central role is played
by the controllability gramian of the closed loop operator.
If we assume as a measure of performance the ∞H  norm of the closed loop operator we
indicate the guaranteed bound as

ozw sG γ≤
∞→ )( ,

analogously to what done for the control.

                                                          
13 If in the model 02 =B  the result is exactly the classical case.
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7.3.3 Performance of observer and state feedback

We approach the problem to find observer or state feedback that guarantee a bound on
the closed loop disturbance - objective operator norm.
The two problems are equivalent involving one the observability the other the controlla-
bility gramian. It is sufficient to develop the solution for one of the problems and ap-
proach the other transposing the operator. Here, for simplicity, we develop the state
feedback.
We have seen in chapter 3 that the key point to solve the problem is given by the ob-
servability gramian, and the next one is a preliminary result we will exploit later.

State feedback minimizing 
2

)(sG zw→

We adopt to evaluate performances the 2H  norm of the closed loop w-z operator. The
solution of the problem is already contained in section 3.2.2 of the chapter 3. The prob-
lem is solved minimizing the observability gramian of the closed loop operator (7.6).
The observability pair involved is

( )HDCHBA 1212 , −− (7.12)

The value that reaches the minimum is

( )XBCDH 2112 ′+′−= (7.13)

with observability gramian X

( ) ( ) ( ) ( ) 012112122 =−′−+−+′− HDCHDCHBAXXHBA . (7.14)

Note that the solution (7.13) applies to a condition a little more general than (7.3), i.e.
0112 ≠′ CD . If the simplifying condition (7.3) is verified, with 0112 =′ CD , (7.13) simpli-

fies to

XBH 2′−= (7.15)

Previous results are interesting as they show that the aim of the control is to make the
state space driven by disturbances unobservable from the objectives, or dually for the
observer, the state space of the observer error uncontrollable from disturbances.

2H  is, however, scarcely useful to represent the relationship existing between the norm
of disturbances and objectives in closed loop and hence control specifications. A second
result, more interesting, is to find H that guarantees an upper bound for the ∞H  norm.
It is discussed in the next section.

State feedback guaranteeing czw sG γ≤
∞→ )(

Let approach the problem to determine the feedback that guarantees an upper bound of
the ∞H  norm of the operator )(sG zw→ . The following result is available
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Corollary 7.2 Proportional state feedback with guaranteed ∞H

If a value H exists that guarantees the upper bound czw sG γ≤
∞→ )(  then the

following Lyapunov equation has a solution

( ) ( ) ( ) ( ) 012112122 =−′−+′+−+′− HDCHDCRLLHBAXXHBA (7.16)

with
XBLXBH c 1

2
2    and  ′=′−= −γ (7.17)

This result is obtained from theorems 3.2 e 3.3 adding the simplifying assumption
(7.3).

From theorem 3.314 of the chapter 3 we know that for any value of H guaranteeing as-
ymptotic stability (the system has, hence, finite ∞H  norm), there exists a value of cγ  so
that is verified czw sG γ≤

∞→ )( . For this value the following observability pair exists
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with gramian X

( ) ( ) ( ) ( ) 02
12112122 =′+−′−+−+′− LLHDCHDCHBAXXHBA cγ (7.19)

and L linked to X from the relationship

XBL c 1
2 ′= −γ . (7.20)

Moreover, with this value of L the disturbance signal built as Lxw =∗  maximizes the
difference 0

22
≤⋅− ∗∗ wz cγ  bringing it close to zero. Hence the norm of the objective

∗z  is close to the upper bound guaranteed by the operator norm 
22

)( ∗
∞→

∗ ⋅≈ wsGz zw
.

For this reason the signal ∗w  is called the disturbance in the worst conditions15.
Integrating the two iterative procedures contained in the theorems 3.4 and 3.3, in the
search for a solution we can use the results of the previous section to find the feedback
H that minimizes the gramian X of the observability pair (7.18), in the presence of the
worst disturbance w.
Interpretation of previous result is the following: the feedback H exists and guarantees

                                                          
14 You will note differences between the formulas of the indicated theorem and the present ones. These
differences are simply the consequence of the simplified assumptions introduced by (7.3)
15 In reality inequality is close but non coincident with the limit, so the disturbance is not properly the worst
one. It is possible, however, to create a sequence of disturbances with the inequality that reaches asymptoti-
cally the limit, assigning to 

cγ  a sequence of values approaching monotonically the value of the norm of the

operator.
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czw sG γ≤
∞→ )(

if and only if the minimization process has a solution.
However, if there exists a solution, the actual value of the norm found will be in general
lower than cγ .
We are not able to minimize cγ , however, once a solution has been found the process
can be repeated for a smaller value of cγ  to verify if better performances exists.
Viceversa, if no solution is found no feedback H exists that reaches the proposed bound,
and it is necessary to increase the value of cγ .
Figure 7.5 shows a block diagram representing the situation of a feedback in the worst
disturbance condition:
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Fig. 7.5 Interpretation of the gramian of the closed loop system

Let note that the model (7.6) in the neighbor of the worst disturbance behaves with a
dynamics given by

w
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Conclusions

The design of a state feedback based on 2H  or ∞H  norms of the disturbance-objective
operator are conceptually very similar. In both cases the problem is solved minimizing
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an observability gramian of the closed loop system. In the first case the gramian is de-
fined by the pair

( )HDCHBA 1212 , −− (7.22)

in the second case by
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While in the first case the choice of the control is independent from disturbances and
offers the minimum of the 2H  operator norm, in the second case, the result is a function
of disturbances in the worst conditions, and the result guarantees an upper bound of the

∞H  norm of the operator.

7.3.4 Design examples

Approaching isolate examples of state feedback or observer design is very instructive,
even if they offer only partial solutions, to understand the problems posed by the feed-
back. For this reason we consider here the two dual cases: input noises with state feed-
back and measure noise with objective estimation.

Reducing sensitivity of input disturbance has a cost in term of control activity

The first aspect to consider when a state feedback, in the presence of input disturbances,
is being designed is the compromise between control activity and disturbance sensitivity
reduction. The cost to pay for the former grows as the performance is improved for the
latter, On the main time the feedback gain, and the response speed grow

Example 7.1 Airplane longitudinal attitude control – reduction of effect of dis-
turbances

Let consider the model of the attitude control of an airplane contained in the fol-
lowing figure
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Fig. 7.6 Longitudinal attitude control of an aircraft

21, ww  are disturbances introduced by the control and by the air turbulence, mod-
eled as white noise, the control u, is the angular position of the elevator and z is
the attitude angle of the aircraft, with respect to horizon, finally, y is the measure
of the attitude angle affected by noise. In this example y is not used as we per-
form a simple state feedback.
The block diagram can be found in the directory of the examples of the pro-
gramming environment with the name of this chapter. It can be open with the
G++ editor.
As an initial experiment we try to assign the following pair of closed loop poles:
( )993.0126.0 ±− . Feedback gains are ( )0.05137710.00131629 . Output and
control, when disturbances are a white noise with unit variance are plotted in the
next figure (output in black, and control in blue colors)
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Fig. 7.7 Responses of output and control to input white noise 1

The P norm of the power spectra of the output and of the control are respectively
1 and 0.05. The feedback in these conditions is very light, the effect of distur-
bances on the output is relevant, reciprocally the control activity is small.
Starting from this feedback value, let try now to reduce the observability gramian
of the closed loop of the extended system 7.6 using the procedure described in
chapter 3. With the weights adopted in 7.6, if 1

2
≤eqG  is achieved, we will have

5.0≤
P

z  and 2≤
Puz . Already at the first iteration performances are those of

the next figure

Fig. 7.8 Responses of output and control to input white noise 2
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with P norm values of  output and control, respectively, 0.15 and 3.
At convergence of the iterations we reach 1

2
≤eqG , with a feedback

( ) ( )0.6-  3.7-,4.1      1.24 == λH (7.24)

The P norms of output and control assume the values of 0.4 and 1.41.
The ∞H  norm of the extended system in closed loop, that in this example has
not specific interest16 , assumes the value of 0.7 and the resulting transfer func-
tions disturbance/output-control are represented in the following figure

u

y

Fig. 7.9 Transfer functions between disturbances and output or control

Example 7.2 Attitude control – reference tracking

The model is identical to the previous example. We want to control now the re-
sponse of the system in the transient to a reference signal. The reference signal
has a limited band and it is specified as the output of the following second order
filter

�
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−−=
01

01.0177.001.0
010

rG (7.25)

The new extended system representing the problem is in figure 7.10

                                                          
16 Let see the exercise 1 of chapter 3.
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Fig. 7.10 Extended system with requirements on the reference tracking error

To guarantee a steady state error equal zero for the tracking error it is weighted
by an integrator as objective.
The best achievable performance simply minimizing the 2H  norm are not com-
pletely satisfactory (the corresponding ∞H  norm is 5).

u

r

y

e

Fig. 7.11 Response to a filtered step - 2H
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A far better result is obtained reducing the upper bound of the ∞H  norm, that
can reach value 1. This example shows how in general ∞H  norm is more ade-
quate than 2H  norm as a measure of performances.

u

r

y

e

Fig. 7.12 Response to a filtered step - ∞H

It is interesting to ask the reasons for the anomaly in the response at the begin-
ning of the transient. In 4.10 a clear delay is observed, in 4.10 the transient start
in the opposite direction with respect to the steady state.  Responsible for the
phenomenon, well known in the tradition of servomechanisms (page. 157 of [4]),
is the zero in the right half plane present in the longitudinal attitude control.
If the reference signal is available in advance a better response could have been
obtained using a pre-action. We will discuss this topic in a specific section.
The resulting controller is composed of two parts: a plant state feedback and a
dynamic filter in input to the reference, in a control structure resembling two de-
gree of freedom of figure 4.10. This means, with a state variable interpretation,
that for a correct control the reference signal alone is not sufficient, but are
needed, as well, all states of its dynamics.

Note 7.1 Design technique

When the observability gramian is used as measure of the performances ( 2H  or

∞H norms of the closed loop system) we suggest in the first design experiments
to assign small weights to the control activity, increasing them up to the limit of
the desired requirements for the other specifications. It is not rare that these ex-
periment will help to show inconsistency in the specifications.
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However, adopting too small weights for the control activity, along with high
signal value for the control, has the tendency to open unrealistically the band of
the closed loop system.

The selection of measures, and level of noise influence the estimation

Approaching the estimation problem we have to remember that it is the perfectly dual of
the previous state feedback control problem. The example, we consider, is still the atti-
tude control in a transient due to reference tracking where we want to estimate the ob-
jectives.

Example 7.3 Attitude control in the transient – estimation of the objectives

The extended system of figure 4.10 is completed by adding measures.

Fig. 7.13 Measures for the estimation in an attitude control problem

Along with the measures of the process output information of the reference signal
is available: the reference itself, its states and rw  the signal that generate the ref-
erence. The noise gains represents the relative intensity with respect to the signal
on which they are applied. As the reference is synthesized inside the controller all
states associated to it are perfectly known. The presence of noises on the meas-
ured reference is an algebraic necessity required from the gramian minimiza-
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tion17, but also they can be considered numerical quatisation errors introduced by
the digital filters that will implement these signals.
On this extended system we will perform a number of design experiments using
different measurments. We start from the only measures of output, and reference.
For each experiment the first row of the next table shows the results obtained by
minimizing the 2H  norm, and the second minimizing the bound guaranteed by
the ∞H  norm:

2H ∞H
Reference alone 1.19 1.43

2.04 1.07
Reference and its states 0.96 1.1

1.91 0.78
Reference generator, states and ref-
erence

0.03 0.14

0.04 0.13
Generator alone 0.03 0.18

Reduction of the ∞H  norm has as a consequence worsening of the 2H  norm
with respect to its optimum value, however this is understandable.
The table shows that is important to use the reference generator.
This example has two relevant aspects to be mentioned:
1. The extended system is not detectable. In fact, in order to guarantee zero

steady state estimation error, the weight on the estimation error contains an
integrator.
This situation is treated with a technique recently proposed by Mita and alt.
[5] that introduces the notion of “comprehensive stability”: according to this
notion the design is performed using the only detectable subsystem and
guaranteeing in the closed loop estimation error operator the presence of a
zero that approximately cancels the unstable pole introduced by the require-
ments. The problem will be discussed in more details in the chapter devoted
to design techniques.
As an example, using only the reference generator signal the transfer func-
tion of the error operator is

2.32367) + 1.58184s + s0.442596)( + 0.01)(s + 0.177s + s(s
0.0714633) + 7)(s0.00010929 + s0.00963515 + 0.218162(s = G 22

2

zwr→

The pole in zero is approximately cancelled by one of the two zeros at very
low frequency, the second zero ensure, again approximately, zero gain at
steady state.

2. Not all dynamics of the extended system have input noise. As a consequence
the dynamic components without disturbances (in this example the dynamics
of the aircraft) are not modified by the feedback introduced by the observer.

                                                          
17 By duality these noise represent objectives on the control discussed in the previous note.
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As a limiting case, measuring only the reference generator, the dynamics of
the reference is not observable, the dynamics of the aircraft is not affected by
noise, as conclusion the estimator degenerates in an open loop system as
none of the model dynamics is modified by the feedback.
In this special case there are not negative consequences, as the process is as-
ymptotically stable. In general is convenient to add input noise; it becomes
mandatory when unstable poles of the model are not influenced by observer
or state feedback.
In fact, as general rule to guarantee internal stability of the controlled system
the whole controllable subspace must be affected by input disturbances and
the whole observable subspace must have noises on the measures.

7.4 Output feedback

Finally, we approach the interesting case of control with feedback from system outputs.
We continue to adopt the extended model (7.2) with the simplifying condition (7.3).

7.4.1 Minimizing the 2H  norm

We recall the decomposition observer-state feedback introduced in chapter 4. The state
observer for estimating the objectives is given by
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with zzeyye zy ˆˆ,ˆˆ −=−= . From this observer the black box model of the system is
derived as
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Let note that the estimated objectives are the new objectives, and the output reconstruc-
tion error plays the role of  external disturbance.
The estimation error of the objectives z, originated by the disturbances w is given by the
operator
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A feedback from the estimated states in model (7.27) results in
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A reasonable approach to the design is to select the observer that guarantees small esti-
mation error of the objectives, e.g. minimizing the 2H  norm of the error operator (7.28),
then, assumed (7.27) as a black box model of the process, considering output recon-
struction errors yê  as independent disturbances, and the estimated objectives as new
objectives, design autonomously the feedback from the estimated states minimizing the
norm of the closed loop disturbances-objectives operator (7.29).
The design is very simple, as these two operations require to minimize controllability
and observability gramians of the respective closed loop operators, independently.
If we adopt a dual vision, and invert the sequence designing the feedback first, and then
the observer the result will be identical, as it carries to the minimization of the same
gramians.
It will be no surprise discover that these two separate operations minimize, as final re-
sult, the 2H  norm of the closed loop operator disturbance-objectives
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This is the well know result of the separation theorem  in the optimum LQG control18.
[2].
The resulting control is sometime satisfactory. We know, however, that the 2H  norm
doesn’t offer a direct link between the norms of input disturbances and output objec-
tives, hence doesn’t help to satisfy any precise requirement, nothing to say of guaran-
teeing robust stability.
A certainly better approach is to design the control that guarantees an upper bound of
the ∞H  norm of the closed loop operator discussed before. This will be done in the
next section.

7.4.2 Guaranteed ∞H norm in the sequence observer-state feedback

We show in this section how to integrate the two problems of estimation and state feed-
back in order to guarantee a bound of the ∞H  norm of the closed loop operator with
output feedback.

We have introduced the black box model as a substitute of the original system.  How-
ever this substitution is useful for the design if the ∞H  norm of the black box model
using state feedback is a guaranteed bound of the actual performances when this feed-
back will used to implement output feedback on the real plant.  Obviously not any ob-

                                                          
18 Linear Model, Quadratic performance index, Gaussian noise.
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server is a candidate for the control design. We show in this sections which conditions
are required for the result to be verified, and which interplay between observer and
feedback originates in closing the feedback.

At the basis of the solution of the robust control design there are two intuitions: the first
is obvious, the second has a formal proof found in the texts for specialists to whom the
interested reader is addressed (e.g. [1] o [2]):

1. State observer is the reference point of the design. In fact, the norm bound

oew sG
z

γ≤
∞→ )(ˆ  for the error, adopted in estimating the objectives with an ob-

server, represents the best result we may expect to obtain for the performances of
the output feedback control – “control performances cannot be better than the
error performance in estimating the objectives ”.

2. The second intuition is that the black box model adopted for designing state
feedback, cannot be any, but it must result from the best observer in the presence
of disturbances in the worst conditions, as computed in the previous sections.

These two intuitions integrate each other in the principal result of this section, that we
present in the form of a theorem.

Theorem 7.2 Output feedback with guaranteed performance of the ∞H  norm

If the best objective estimator, designed in the worst disturbance conditions for a
given bound oew sG

z
γ≤

∞→ )(ˆ  exists, and a state feedback on the black box

model obtained from this estimator exists with control performance

cze sG
y

γ≤
∞→ )(ˆˆ , then, the output feedback control obtained integrating estima-

tor and state feedback, guarantees internal stability, and performances given by

ozw sG γ≤
∞→ )(

if and only if the condition oc γγ <  is verified.

In conclusion, the black box model offers guaranteed performances for the original
process only if it derived from a specific class of observers, and the black box model in
closed loop has a norm that outperforms the error of estimating the objectives.
We offer in the following a trace of demonstration of the previous result.
Consider the output estimator (7.26) with an estimation error given by (7.28), seen in the
previous section. Assume to select the best estimator in the worst disturbance conditions
as result from testing a guaranteed upper bound for the ∞H  norm. A simple analysis,
conducted exploiting duality, from the results of figure 7.5 and from equation (7.21),
shows that the worst conditions are reached when disturbances satisfy the condition

  ( ) eLCeLwKDB z ˆˆ 1211 ==⋅− ∗ . (7.31)
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In fact, any perturbation with respect to this value, will give an estimation error
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which is exactly the dual of 7.5.
Hence, the (7.32) represents the estimation error for disturbances in the neighbor of their
worst conditions. In this neighbor, the black box model can be written as
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Let consider that in (7.33), while yyey ˆˆ −=  is built through the measure y, effectively
available, zzez ˆˆ −= , depends on z that is, not available, and hence we assign 0=z . The
observer in this situation modifies to the following form
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substituting in the right hand side of the equation (7.34) to ẑ  its value: uDxCz 121 ˆˆ += , the
model becomes
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with 12221, LDBBLCAA +=+= , or also, expressing explicitly the output
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This is the black box model with guaranteed performances with respect to the process to
assume for the control design.
The error model obtained by difference between the extended system and the observer
(7.34) is
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We can approach, now, the second step of the design, closing the state feedback on the
model (7.36).
Let xHu ˆ−=  be the control law, the closed loop of (7.36) results in
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and the filter to close the output feedback is
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The block diagram representing the complete result is show in the next figure
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Fig. 7.14 Decomposition observer-feedback

From previous considerations we can state the two steps characterizing the design proc-
ess:

1. In the first step, for a given 
oγ , the feedback K of an optimum observer in the

worst disturbance condition is determined. If a solution exists, 
oγ  represents an

guaranteed upper bound of the norm of the operator disturbances-objective esti-
mation errors. For this observer the matrix L corresponds to the worst distur-
bances. With K and L the black box model for feedback design is built;

2. H , the feedback from the estimated states, is computed in the second step solving
a state feedback problem, assuming as new disturbances the measure reconstruc-
tion errors, and as new objectives the objective estimates. The feedback design
results in a closed loop operator zey ˆˆ → , with a norm bounded by 

cγ .

3. if 
oc γγ < , the control law with guaranteed bound 

oγ  has been found, otherwise a
greater value to 

oγ  has to be assigned and the observer - feedback design re-
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peated. A solution always exists when ∞→oγ  if observability with respect to 2C
and controllability with respect to 2B  of the model dynamics are satisfied: it
means the optimum 2H  norm control.

7.4.3 Guaranteed bound of the ∞H  norm in the sequence control-observer

Even if previous development process of the control is our preferred one, it is very in-
structive to approach the output control problem in dual form.
The design process modifies in the following way:

1. The state feedback, assuming all states measurable without noise, represents the
reference point of the design. In fact the bound of the norm czw sG γ′≤

∞→ )(  as-
sumed for the objective operator is certainly the best achievable results that we
can expect from an output feedback with uncompleted and noisy information –
“performances with output feedback cannot be better than those guaranteed with
state feedback ”.

2. The return signal for closing the loop has to be estimated as the output of the best
state feedback in the presence of their worst disturbances.

These two assumptions integrate each other in the principal result of this section, that we
present in the form of a theorem (dual of the previous one).

Theorem 7.3 Output control with guaranteed ∞H  norm performances (dual)

If the best state feedback in the presence of the worst disturbances for a guaran-
teed bound czw sG γ′≤

∞→ )(  exists, and an estimator of the return signal from this

feedback guarantees estimation error norm 
oew sG

ry
γ′≤

∞→ )(ˆ~ , then, the output

feedback obtained integrating the two results guarantees internal stability to the
loop and final performances

czw sG γ′≤
∞→ )(

if and only if the condition 
co γγ ′<′  is satisfied.

We give a trace of demonstration of the previous result.
In the state feedback case objectives are given by (7.6), with H the optimum feedback
guaranteeing an upper bound of the closed loop operator norm in the presence of distur-
bance in the worst conditions Lxw =∗ .  Actually, the control u is obtained by a state
estimate 

ryrr eHxuxHyyu ˆ,ˆˆ,ˆ +−==−=  with ,ˆˆ  and  ,ˆˆ xxeeHe
ry −== , and distur-

bances, not necessarily in the worst conditions, can be expressed as wLxw ~+= , with w~
an arbitrary perturbation. In these conditions objectives and w~  are given by a state feed-
back of the extended system
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while 
ryê  and y result from the following model
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with LDCCLBAA 21221 , +=+= .
The block diagram representing the feedback system with control obtained from an
estimate of the loop return signal is represented by the following figure 7.15
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Control
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Fig. 7.15 Decomposition control-estimator

Let note, observing figure 7.15, that when w is in the worst conditions the signal w~  is
identically zero, as well as 

ryê (selecting the initial conditions of the observer zero),
hence the norm of the objectives is the closest to the bound 

22
wz cγ′≤ .

The loop return signal ry , however, is not available; we implement now its estimator. In
the worst disturbance conditions it is reasonable to introduce in the model an estimate of
the disturbance in the worst conditions ŵ , using xLw ˆˆ = , L determined in the first step.
The model can be rewritten as:
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The estimation error, obtained from the difference between (7.41) and (7.43), observing
also that wDeCyye xy

~ˆˆˆ 212 +=−=  assumes the following form
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This result is nothing but the solution of the output estimation problem (7.11) seen in
section 7.3.2 applied to (7.41).
The original problem of control is reduced to a problem of estimation of the return sig-
nal with the objective to minimize the estimation error 

ryê .
There exists a similarity with (4.71) In chapter 4, the model here has, however, a few
significant differences due to the presence of the disturbance in the worst conditions.
Let the observer guarantee a ∞H  norm of the error operator (7.44) 

oew sG
ry
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∞→ )(ˆ~ .

The resulting controller, obtained with proper substitutions in (7.42), is
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From previous results the steps for designing the control are the following:

1. In the first step the best state feedback H for a guaranteed norm bound cγ′  is
computed (7.4). In this condition the worst disturbance is related to the matrix L;

2. K , the estimator feedback, is computed, in turn, estimating the loop return signal
(7.41). Let be the resulting operator norm of the estimation error 

ryew ˆ~ →
bounded by 

oγ′ .

3. If co γγ ′<′  the objective to design a controller guaranteeing czw sG γ′≤
∞→ )(  has

been achieved, otherwise a greater value of cγ′  must be proposed and the design
process repeated.

This result is the dual of the one obtained solving the problem (7.35).
We note that the resulting filters, as well as the feedback matrices L, H and K are not
identical in the two cases, performances however are identical. The solution if the prob-
lem, in fact, is not unique, but this fact was already known.
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7.4.4 Conclusions

We have solved the problem to design a control with a guaranteed closed loop norm
following two dual approaches. These are equivalent, being obtained by adopting the
extended system or its transpose.
We have seen that the problem to guarantee a bound of the ∞H  norm, similarly  to the

2H  norm case, is approached by solving two problems in sequence: state estimation and
state feedback. Solved the first problem, we obtain an abstract representation of process,
uncertainties and objectives, we called black box model, that under certain conditions is
equivalent in term of norm to the original one.
There exists, however, a substantial difference between the two approaches 2H  and

∞H , and this difference is evidenced comparing figures 7.14 and 7.15 with 4.18 and
4.19. While in the first case a separation exists, either in the design and in the resulting
closed loop dynamics, between feedback and observer, in the second case the two prob-
lems are interdependent and the dynamics of the controlled system is not any more the
union of the dynamics of feedback and observer resulting from the design.

7.5 The black box model

We clarify the idea to substitute to the original extended system an abstract representa-
tion with guaranteed performance to simplify the design of the feedback. The decompo-
sitions in figures 7.14 and 7.15 offer two dual interpretations of this idea.
In first interpretation the best estimators of the objectives evaluated by the estimation
error 

2
ˆze  given by (7.36) is the black box model, as shown in the  next figure
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Fig. 7.16 Black box model

The control structure results from the design of the state feedback of the model
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Fig. 7.17 Black box model in closed loop

In the second interpretation expression (7.41) offers a dual interpretation.
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Fig. 7.18 Dual interpretation of the black box model

The state feedback return signal from the extended system is the unmeasurable output
we want to estimate. In conclusion the control structure is similar to the one of figure
7.17 but the two steps, estimation and control, have been interchanged.

7.6 Disturbances directly present on the objectives 011 ≠D

Before approaching sample data systems we briefly consider the case where matrix 11D
is different from zero and disturbances are known.
If  disturbances are directly present on the objectives ( 011 ≠D ), and are measurable,
such as in the direct disturbance compensation case, performances are improved by
adding to state feedback a term function of disturbances.
The new control law has the following form.

wHHxu w−−= (7.46)

The extended system is the following
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where we indicate also
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The closed loop system, is in these conditions
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It has been proven that to guarantee a bound to the ∞H  norm of this operator the output
signal ( )wTz 11  has to be taken into account for a given matrix 11T , and to compute the
gramian the new observability pair
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substitutes (7.23).
The observability gramian results  from

( ) ( ) ( ) ( ) 0111112112122 =′′+−′−+−+′− LTTLHDCHDCHBAXXHBA . (7.51)

where the matrices LTHH w  e ,, 11
 are linked by the following relationships
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7.6.1 Conclusions

Previous result lends themselves to some interesting conclusions.
When 011 ≠D , situation frequently found in the control specifications, no substantial
modifications result in the solution, with the exception of the presence of the matrix 11T
in the gramian computation.
The direct contributions from disturbances with gain wH  doesn’t affect the feedback
and, as can be seen in (7.52), has the unique scope to minimize the contribution to the
norm of the term 11D .
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7.7 Elemental design examples

In this section we replicate with synthesis techniques the same examples used to intro-
duce the classical design in the frequency domain. It will be interesting verify that,
starting from identical specifications, in the new results will be present the elements
similar to those used by classical approaches such as lead, lag filters and so on.

Example 7.4 Lag filter to guarantee error zero to tracking a ramp

The problem is the one proposed in the example 6.6 and approaches the require-
ments of the sensitivity function at low frequency. The model is given by

24)+(s s
400)( =sG ,

We impose a closed loop behavior, with unitary feedback, represented by the
transfer function

206.0,
2

)(
22

2

=ω=ζ
ω+ζω+

ω
= n

nn

n
eqdes

ss
sG , (7.53)

with tracking error zero to the ramp.
To satisfy these two requirements, adopting an extended system of the type of
figure 7.2 where 1WGd ≡ , an output weighting function

24.17)+(ss 
404.1) + 24s + (s 0.1667)+(s)(

2

2

1 =sW

is selected, with the following arguments. To guarantee (7.53) a sensitivity

)(1)( sGsS eqdes−=

is needed.  Moreover, to satisfy steady state specifications, a second zero in the
origin is required. )(1 sW  is the reciprocal of this sensitivity.
Completing the specifications with some measurement noise and a weight on the
control activity to avoid singularity, the final extended system is the following
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Applying the design process, the reachable performance is 1=γ , and the result-
ing compensator

 
 1.94e004) + 204.7s + (s 24.17)+(s s

105)+(s 24)+(s 0.1779)+(s 184.7332)( 2=sGc
.

Let note that, ignoring zeros and poles at high frequencies, that have scarce roles
in the compensation the filter is very similar to the one design in the previous
chapter

 s
165.0)( += ssGc .

Example 7.5 Lead filter to guarantee loop stability margins

This problem has been considered in the example 6.8, it takes into account a re-
quirement on the stability margin. The open loop system is given by

24)+(s s
400)( 2=sG ,

and the weight on performance

6.25+s5+s
s 2 

2

2
1

1 =−W .

This function answers to two objectives: to define the band of the sensitivity
function, and its behavior at steady state, and to impose a margin of stability by
constraining the maximum absolute value below 2.
The extended system is
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The reachable bound of the closed loop operator norm value is 1=γ .
The compensator resulting from the synthesis is

  
377) + 22.39s + (s 29.55)+(s
24)+(s 1.091)+(s 98.1958)( 2=sGc

.
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Ignoring, again, higher frequency dynamics, that have no influence in the com-
pensation, the filter has a lead behavior equivalent to the one built by trials and
errors

( )
24s

38)(
+

+= ssGc
.

In the next figure the sensitivity functions ( 1S  from synthesis, 2S  from classical
design) are compared with 1
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Fig. 7.19 Comparisons between performances of two compensators

Example 7.6 Notch filter to guarantee robust stability

We add to the requirements of the previous example uncertainty represented by
ignoring parasitic dynamics described by multiplicative uncertainty with weight

2W

( )
2252
)2(,1

)24(
400

)2252)(24(
225400

222222 ++
+=∆+

+
=

+++
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ss
ssWW

ssssss
Gp .

The new extended model is described in figure 7.20, similar in principle to the
prototype 7.3, with weights transferred from disturbances to objectives. The rea-
sons for that will be cleared later.
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Fig. 7.20 Performance, and robust stability

The extended system is the following
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(7.56)

With the proposed system the design reaches a guaranteed bound 1=γ , if a
structuring approach as (5.33) is adopted, hence robust performances are guar-
anteed.
The compensation filter is

2597) + 58.6s + (s 321.8) + 10.39s + (s 71.59)+(s
225) + 2s + (s 1.137)+(s 24)+(s 2598.7255)( 22

2

=sGc
.

With the cautions of eliminating some high frequency dynamics, the synthesized
compensator has similar behavior of the classical one. In particular are recogniz-
able lead action and notch filter. The frequency plots of the two filters are com-
pared in the next figure.
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Fig. 7.21 Comparison of two filters

It is useful to compare the indices of robust performances 
121 eqGWSW ⋅+  in the

two cases.
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Fig. 7.22 Comparison of robust performance indices

You may note from a closer analysis that the classical design doesn’t satisfy ro-
bust performances, but simply robust stability, at difference from the synthesis
design.

Example 7.7 Two degree of freedom design

The system is the same of example 7.5. We add a requirement on the tracking er-
ror, assigning the desired closed loop transfer function eqdesG :
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0.25 + s 0.6 +s
0.25

2=eqdesG .

Justifications for this choice are contained in the example 7.5.
The block diagram of the extended system is contained in figure 7.4 and the
equations are
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Completed the design are compared desired and achieved closed loop functions
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Fig. 7.23 eqdesG  and comparisons of the results

The control filters in the two cases

644.9) + 27.4s + (s 0.25) + 0.6s + (s 34.17)+(s
2.498)+(s 2.502)+(s 24)+(s 12.09)+(s 0.62931   )(

644.9) + 27.4s + (s 0.25) + 0.6s + (s 34.17)+(s
0.25) + 0.6s + (s 24)+(s 1.13)+(s 210.49 )(
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c
(7.58)
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Example 7.8 Two degree of freedom in the presence of uncertainty

We complete previous example introducing the uncertainty of example 7.6. The
block diagram of the extended system is obtained merging the two schemes of
figure 7.20 and 7.4, where the objective 1z  through the weighting function 1W
through the operator 111 zw → , takes into account for the sensitivity specifica-
tions and, through the operator 1zr → , of the tacking error.
The filters resulting from the design are

3320)  58.88s  (s 322.2)  11.25s  (s 0.25)  0.6s  (s 69.94)(s
225)  2s  (s 2.382)(s 2.665)(s 24)(s 12.12)(s 12.1087   )(

3320)  58.88s  (s 322.2)  11.25s  (s 0.25)  0.6s  (s 69.94)(s
225)  2s  (s 0.25)  0.6s  (s 1.14)(s 24)(s 3270.3291 )(
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(7.59)

Let compare compensators in the two cases (7.58) and (7.59)
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Fig. 7.24 Compensator with and without uncertainty

In the presence of uncertainty a greater lead action is required from the filter to
improve stability margins.

Example 7.9 Aircraft attitude control

The design of an attitude control started a the beginning of this chapter is con-
cluded in this example. The extended system encompasses disturbances on the
dynamics and tracking error. The measure is the attitude angle.
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Fig. 7.25 Extended system of the aircraft longitudinal attitude control

With this model the best achievable value of the ∞H  norm of the closed loop
operator is 2.5. The step response has not significant differences with respect to
the state feedback case

Fig. 7.26 Step response of output and control

The effect of disturbances is, however, relevant
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Fig. 7.27 Response to disturbances

With power spectra norm of the output error and of control, respectively, 2.5 e
5.4.
It is interesting to show the behavior in frequency of the compensator and of the
loop function.

Fig. 7.28 Transfer functions of compensator and loop
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7.8 Sampled data systems

Sampled data systems doesn’t deserve a special attention, with the exception of a few
peculiarities: in sampled data system the matrix 11D  is customarily present and pure
delays can be explicitly treated.
Even if the equations are different design techniques and development process of the
continuos case apply very closely also to the discrete case [6]. See also the appendix of
[7].
The extended system is defined similarly to the continuous case
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Conditions a) and b) are obtained by properly transforming the input and output vector
spaces.
The basic difference is constituted by the Lyapunov equations to compute gramians that
in the discrete case assume the following form:

BBAAXY
CCXAAX
′+′=

′+′=

7.8.1 Control with total information

Control

We consider preliminarily results of state feedback. The starting problem is to compute
the state feedback that minimizes the observability gramian of the closed loop system.
The minimum is obtained with a state feedback

Hxu −= (7.61)

The closed loop operator assumes the well know form

w
DHDC
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=
11121
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The Lyapunov equation of the observability gramian is

( ) ( ) ( ) ( ) 01211212020 =−′−+−′−= HDCHDCHBAXHBAX

To minimize the norm of 0X  there exists an iterative algorithm, as for the continuous
case, with H  given by

( ) ( )AXBCDBXBIH 02112
1

202 ′+′′+= − .
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If, instead of the gramian, we want to minimize the closed loop operator norm 
2

)(zG zw→

and disturbances are known, a feedforward contribution from disturbances has to be
added to the feedback:

wHHxu w−−= (7.62)

with
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The controlled system is now
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We note that the optimum gramian is not influenced by the presence of the feedforward
term.

Observer

By duality is solved the observer problem. The estimation error operator is:
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In these conditions the observer assumes the following form:
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that, expressed directly from the system outputs, becomes
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Guaranteed performances

We approach here the prototype of the state feedback problem guaranteeing a bound of
the ∞H  norm γ≤

∞→ )(zG zw .
The problem is approached as the minimization of the observability gramian in the worst
disturbance conditions, with control of the form

wHHxu w−−= (7.66)
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and worst disturbances linear functions of the states

Lxw = (7.67)

The observability gramian satisfies the following Lyapunov equation

( ) ( ) ( ) ( ) ( ) ( ) 0111112112122 =′+−′−+−′−= LTLTHDCHDCHBAXHBAX

with a certain weighting matrix 11T . More precisely the observability pair that defines the
gramian is
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7.8.2 Examples

Some of the control examples solved in the continuous case are translated to a sampled
data control system with digital controllers.

Example 7.10 Notch filter with a digital control

This is the sampled data form of example 7.6. A sampling period of 0.1 s is
adopted.

 Matrices of the extended system, obtained with a zero order hold reconstructor
from the continuous case are the following
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With the proposed model the best achievable bound is 2.1=γ , hence, robust
performances are not satisfied.
The compensator is

0.6291) + 0.4177z - (z 0.9131) + 1.338z + (z 0.1321)+(z
0.8187) + 0.134z - (z 0.09072)-(z 0.9134)-(z 2.19)-(z 3.7266-)( 22

2

=zGc
.

We compare the behavior in frequency of the continuous and discrete compen-
sator, lead action and notch filter are clearly evident.
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Fig. 7.29 Continuous and sampled data compensators

The loop functions are compared on the Nichols graph. Let note that, because of
sampling and the relatively high sampling period, most of the stability margin of
the continuous case has been lost. The reader can repeat the design with a shorter
period to verify that most of the performances of the continuous case can be re-
covered.
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Fig. 7.30 Stability margins of the two loop functions

Indices of robust performances in the two cases are compared in the next figure
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Fig. 7.31 Robust performance indices in the two cases

Example 7.11 Digital attitude control

This example repeats in digital form example 7.9. To select the sampling period
we observe, first, the loop function of the continuous case
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Fig. 7.32 Transfer function of compensator and loop in the continuous case

Based on the frequency analysis of the loop transfer function we select the sam-

pling frequency as 50
2

=∆w  in order to obtain in the discrete case a behavior

comparable with the one of the continuous case, resulting in a sampling period
s05.0=∆ . The results doesn’t differ substantially from those of  figure 7.26.

The anomaly in the response, due to the presence of  a plant zero in the right
hand side will be approached with a technique of preview in the sequel. It is in-
teresting to verify how the extended system structure allow flexibly to encom-
passes also this aspect.
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