


Chapter 5
PERFORMANCE AND ROBUSTENESS IN CONTROL

Previous chapters considered the analysis of the closed loop controlled system and its
stability in nominal conditions. Obviously, without stability we don’t have a control
system, but stability, alone, is not sufficient. To be useful from an engineering point of
view the controlled system must satisfy an envelop of requirements. These requirements
refer to the behavior of a certain number of significant system variables in steady state
and during transients in response to external signals, either references or disturbances.
These requirements are called performances of the control. Or they refer to the capabil-
ity to guarantee performances, and especially stability, in the presence of plant uncer-
tainties: this is called robustness. In the previous chapter we have shown, mostly for the
SISO case, how properties of the control are evaluated by the four classical closed loop
transfer functions: loop sensitivity, complementary sensitivity, input disturbance sensi-
tivity and control activity.
In this chapter we present a unitary model covering both performances and robustness
that extends and generalizes previous concepts to MIMO systems. The approach is
based on the construction of an appropriate extended system embedding nominal model,
process uncertainty, disturbances, and requirements. It has the scope to link perform-
ances and robustness to the selected control law and drives the design. Achievement of
the objectives are measured by the norm of the extended system in closed loop.

5.1 The extended system of the control problem

The key point of any model based design is the relationship between the process and the
model chosen to represent it.  Differences between them, commonly indicated as uncer-
tainties, are due to the presence of external (unknown) disturbances (classically they
were called additive disturbances), and model approximations (multiplicative distur-
bances). The first group of elements affects primarily the performance of the controlled
system, the second group the stability of the closed loop.
We have discussed in the introduction two possible points of view to relate process and
model, we will develop here the view we called transparent box, where we assume to
know explicitly the causes that originate the differences on the outputs (external distur-
bances or modeling errors). The second one, we called black box, where the system
behavior is filtered by a model-reconstructor and discrepancies are abstractly repre-
sented by the error between the outputs measured on the system and those returned by
the model will be delayed until the chapter devoted to synthesis.
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To formalize the relationship between process and model it is convenient to introduce a
particular dynamic structure composed of two groups of inputs and outputs: the first
group of inputs are disturbances or in general external signals (disturbances entering on
the dynamics, disturbances on the measurements, reference signals, effects of modeling
approximations), the second group are the controls. The first group of outputs represents
the objectives, those plant signals that must satisfy control requirements (output sensi-
tivity from disturbances, control activity, state activity, output reference tracking errors),
the second group are the measurements used to close the control loop.
The literature has called this dynamic structure the extended system of the control prob-
lem.
The role of the extended system to cope with both external disturbances and model
approximations will be objects of two specific sections.

To outline the rationale of the extended system we start from the control loop with cas-
cade compensator 4.5 of chapter 4.
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Fig. 5.1 Feedback control in the presence of external disturbances

In figure 5.1 G  represents the plant, d  are process disturbances transferred on the out-
put, r is a reference signal, y are the plant controlled output, as well as the measures.
With 3,2,1, =izi  we indicate those signals of the controlled system that carries re-
quirements, we called objectives. In particular 1z , characterizes the tracking error
weighted by a filter 1W , 2z  is the control signal, as a response from disturbances or
references, weighted by a function 3W , finally 3z  is the output error effect of distur-
bances weighted by 4W .
The weighting filters chosen for each objectives have the scope to specify the impor-
tance we assign to errors at the different frequencies.
Let assume all input signals of unitary norm, the objective of the control is to guarantee
that the norms of the signals iz  is below to an assigned bound. With the freedom to
select the gains of the weighting filters, conventionally the value 1 is chosen as the
measure of achievement of requirements.
Generically w indicates the vector of external signals, u the control signals, z the objec-
tives and y the measured outputs.
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The control loop of figure 5.1 can be redrawn in the general form of 5.2 where the
closed loop relationships between disturbances and objectives are evidenced explicitly.
You can think of this closed loop operator as a generalized weighted form of the closed
loop characteristic functions (4.11) and (4.12) discussed in the previous chapter.
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Fig. 5.2 Extended system in close loop –  - performances

In the presence of model approximations the same closed loop assumes the form of
figure 5.3.  Discrepancies between process and model, indicated in the introduction
chapter as 

m∆ , are here represented by 21W∆ , where ∆  is a norm bounded, but otherwise
arbitrary operator describing the range of uncertainty, and 21W  a chosen filter that as-
signs the relative magnitude on frequency of the uncertainty.
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Fig. 5.3 Uncertainty on the process in a closed loop system

Also in this case if we assign to 2z , input of ∆ , the role of objective and to wem = ,
output of ∆ , the role of disturbance, the closed loop system assumes the form of the
feedback of an extended system similar to figure 5.2.
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Fig. 5.4 Extended system in closed loop – robustness

However, while in figure 5.2 the closed loop operator emphasized the effect of the dis-
turbances on the objective, here the operator ∆ , dually with respect to cG  introduces an
additional feedback with the consequence to modify the dynamic nominal behavior, and
especially stability, at the changes of ∆  of the controlled system. This justifies the defi-
nition of robustness control when stability or performances are guaranteed for all possi-
ble values of ∆ , in a certain class.

In both cases the dynamic operator ES is described with a state variable representation
in the following form:
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or, alternatively by the corresponding transfer matrix
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where 22211211 ,,, GGGG  are the four partitions of the extended system.

5.1.1 Linear fractional transformations

To perform analysis we will need explicit relationships between one pair of input-
output, e.g. z e w, when the other pair y e u is closed by a control or viceversa by an
uncertainty operator.
This operation involving the four operators corresponds in algebra to a linear fractional
transformation (LFT) between two variables.
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Feedback between y and u

In the first case if we are considering a control feedback a lower LFT is performed on
the extended system
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Fig. 5.5 Extended system with a feedback between y an u

Introduced the feedback as in figure 5.5 the closed loop operator is derived as follows
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Feedback between z and w

Dually with respect to the previous case the presence of ∆  between z and w will require
an upper LFT to express the system as a function the uncertainty.
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Fig. 5.6 Extended system with feedback between z e w

Algebraic manipulations give
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5.1.2 Extended system applied to external signals

We use now previous lower LFT to analyze the most significant situations of sensitivity
of the controlled system signals to external disturbances. Results of this and of the next
section are taken from [1].
The control loop is the one of figure 5.1, We consider as external signal the reference r
and as objective the difference y-r, tracking error between system output and reference.
The requirement of the control is to guarantee the norm of the closed loop operator
below a given value, where 1W , is a proper and stable transfer matrix weighting the
error at the different frequencies. In this configuration w is coincident with r, and the
extended system (5.2) assumes the form
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Applying the lower LFT (5.3), closing the loop between y and u we obtain
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Performances are defined by the transfer matrix between r and z. This is precisely the
closed loop sensitivity function we have seen in the previous chapter. We can always
chose the gain of 1W  such that requirement satisfaction can be set in the form
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In term of performances result (5.6) offers an interesting interpretation, resulting from a
property of the ∞H  norm, in fact it implies
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So, if we define with 1W  a proper boundary region in frequency represented by the
reciprocal of its maximum singular value satisfaction of performances guarantees that
the maximum singular value of the sensitivity function is always below this region. This
is exactly a classical requirement of the sensitivity function in a control loop.

If, instead of the reference, we had chosen as external signal an additive disturbance
localized on the output ( me  in the figure), and as objective the controlled system output,
with the objective to guarantee a bound to the norm of the closed loop operator between
disturbance and output, the extended system would be
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that becomes, after closing the feedback:
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Performances, also in this case, involve the weighted closed loop sensitivity function.
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Let consider, again, the reference as external signal and set requirements on the control
activity needed in tracking the reference. The new extended system is
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Closing the loop we obtain
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involving the closed loop control activity function equG .
We can integrate the two previous requirements, asking for a limited tracking error, in
front of an acceptable control activity, with a new extended system
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Closing the loop
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performances are referred to the two block operator
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where, both, sensitivity function and control activity functions are present .
From a result of algebra we know that
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hence, a bound on (5.12) implies the same bound to separately both requirements.

5.1.3 Extended system referred to the plant uncertainties

In this section we take into account only structural components, called in classical terms
multiplicative disturbances. We have already represented the plant uncertainty as the
dynamic operator difference between process and model GG pm −=∆ .
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Fig. 5.7 Difference between process and model

This difference can have various origins:

•  The process structure is known but some parameters are not, or they may change
in time or are know only in a range of approximation;

•  The process is known but some of its dynamics are willingly ignored for sim-
plicity;

•  The process present some non-linearity, while e want to design the control with
linear techniques;

•  Finally part of the process, especially at high frequencies, are unknown.

Unable to describe exactly the system, the objective of the representation is, at least, to
characterize a region of uncertainty were we expect that the system will certainly stay,
and this is achieved introducing the operator m∆ .
The design will exploit conservatively the knowledge of the bound of this region, in
order to guarantee performances and stability for any possible operator inside the region,
hence also in the worst conditions. Obviously we desire to keep this region as small as
possible among those generated with the same level of complexity of the model and that
certainly contain the system. The most simple technique we have in the realm of linear
invariant models to represent regions of uncertainty is through a representation in fre-
quency, this call back weighting functions similar to those introduced at the beginning
with reference to performances.
Let indicate with ∆  an arbitrary linear, proper, invariant, BIBO dynamic operator, with
the unique constraint to have limited ∞H  norm: 1<∆

∞
. This operator will parameter-

ize all elements in the region of the system uncertainty. Characterization of the region
can be achieved through few alternative schemes, the choice among one of them, based
on the knowledge we have of the system, has the scope to guarantee the closest coverage
of the region. Let introduce a strictly stable dynamic operator 2W , that represents the
weight we assign to the uncertainty at each frequency. We will see that this operator is
able to represent exactly different situations of structured uncertainty (unknown or
changing parameters) or approximately unstructured uncertainty (presence of delays,
parasitic dynamics not well identified, etc.). The uncertainty region is defined, through
the variation of the operator ∆  in the region defined by its bound in norm. The choice
of one of these schemes must achieve operators 2W  stable with minimum norm.
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Multiplicative uncertainty

This is the most common case. The system is described from the nominal model as

( ) GWIGp ⋅⋅∆+= 2 (5.13)
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Fig. 5.8 Uncertainty in multiplicative form

Operator 2W  represents the relative uncertainty with respect to the nominal model.
This structure is used to describe changes in the system gain, or stable poles at high
frequency ignored in the model. These ignored poles represent what is customarily
called parasitic dynamics.

Example 5.1 Stable pole at high frequency ignored

The system has the following transfer function ( )( )ss
G p ⋅++

=
1.011

1  were we

want to ignore the pole in -10. The system is represented as follows:
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The system is described as follows
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Fig. 5.9 Uncertainty in additive form

This form can be used, as example, to represent uncertainty on system zero in the right
half plane.

Example 5.2 Uncertainty on zero in the right half plane

The system has the following transfer function 
1

1
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s

sG p  with

5.05.0 +≤α≤− , it can be represented as follows:
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Multiplicative uncertainty at denominator

This and the following schema re dual of the first two presented.
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Fig. 5.10 Uncertainty in multiplicative form at denominator

This form is the proper one to ignore unstable system poles

Example 5.3 Ignored unstable pole
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The system has the following transfer function ( ) ( )11
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 This uncertainty description has the following form
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Fig. 5.11 Uncertainty in additive form at denominator

This scheme is useful to represent uncertainty in system poles.

Example 5.4 Additive uncertainty at denominator

The system has the following transfer function 
α−+

=
1
1

s
G p , where α  is an

unknown parameter with range 22 +≤α≤− .  The system can be  represented in
the following form
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5.2 Stability, performance and robustness

5.2.1 Robust stability

Each representation of uncertainty is linked to a corresponding extended system, ob-
tained by selecting as z and w input and output of the operator ∆ , as shown in the previ-
ous figures. The transfer matrices for the different structures have the following repre-
sentations:
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2. Second configurations
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3. Third configuration
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4. Fourth configuration
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All representations in closed loop show a similar block diagram, as in figure 5.12, with
an additional feedback introduced by the uncertainty. With this structure, for a given
control law, the behavior of the closed loop system when ∆  changes can be analyzed.
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Fig. 5.12 Closed loop extended system in the presence of uncertainty

The feedback ∆ , in this second loop, is a completely arbitrary BIBO operator with a
bounded norm, hence the sign of the feedback is irrelevant.
Let indicate with eqG  the transfer matrix between w and z, resulting from closing the

loop of the extended system in nominal conditions. Obviously eqG  must be asymptoti-
cally stable, in fact, 0=∆  is part of the uncertainty region.
We desire that performances and especially stability will be preserved for any value of
the uncertainty in the admissible region.
Robust stability is the property of the control that guarantees stability not just for the
nominal model, but for any model obtained from the uncertainty operator in the speci-
fied region.  The property is stated by the next theorem.

Theorem 5.1 Robust stability ("Small gain theorem")

Let be eqG  an symptomatically stable transfer matrix, and ∆  an arbitrary as-

ymptotically stable operator with norm 1<∞H , then the feedback loop of eqG
and ∆  is stable if and only if the loop gain satisfies

1),(,1 <∆∈∆∀<⋅∆ ∞∞
SMeqG .

This implies that that stability is guaranteed by 1≤
∞eqG . Moreover for

1>
∞eqG  a value of ∆  can always be found that make the closed loop system

unstable.
The definition of "Small gain theorem" descends from the previous results, and
was presented the first time by Zames in [2].

Let analyze the four previous structures at the light of the small gain theorem 5.1, ap-
plying a lower LFT involving y and u.
In the first case we have



Performance and robustness in control 121

( )
( )

w
GG

GGGGW
y
z

c

cc ⋅
�

�
�

�

+
+−= −

−

1

1
2

1
1

Hence theorem 5.1 imposes for stability a condition involving the unitary feedback
equivalent closed loop function
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In the second case the results is
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Robust stability refers to the closed loop control activity function
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In the third case the w-z relationship is
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with conditions for robust stability on the loop sensitivity function
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In the fourth case we have

( )
( ) w

GGG
GGGW

y
z

c

c ⋅
�

�
�

�

+−
+−= −

−

1

1
2

1
1

Robust stability is related to the sensitivity function linking input disturbances and out-
puts
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We will see in the next section how performances and robustness integrate each other to
offer a prototype of specification for problems of closed loop controls.

Example 5.5 Active suspension for cars

A car subject to road disturbances is represented in first approximation as a mass
suspended on spring and damper. An active damper is a force control through an
hydraulic motor of the suspended mass.
The model cal be represented by the following equation:
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)()( dykdyymF −+−+= ���� β

where d, as disturbance, is the road surface level, y the vertical position of the car
and F the input force by the hydraulic actuator

 Fig. 5.13 Block diagram of the suspensions of a car

The parameter values are uncertain, in particular we assume the following de-
scription of the uncertainty

( ) ( ) ( );5.0130000;8.01225;85.012000 km km ∆+=∆+=∆+= ββ

If we observe that uncertainty on the mass m is represented by the form of figure
5.8, the one of  β  and k  by the form of figure 5.10, the block diagram of active
suspensions taking into account uncertainty is the following

 Fig. 5.14 Uncertainty in the suspensions of a car
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Let close a control loop based on observer and state feedback positioning in
nominal conditions the poles of the estimation errors, and those of the state feed-
back control in 55  and  1010 ±−±− , respectively.
The three closed loop operators related to the three uncertainties (mass, damper
and spring) separately have ∞H  norms with values dBand 8.9  .1,-353 − . We
note that the mass uncertainty, only, is critical for the control stability. The small
gain theorem is not satisfied. Very easily we can verify that with an uncertainty
operator 1=∆ m  the closed loop system is unstable.
Let try to design a second control that guarantees robust stability, e.g. choosing
observer and feedback with the objective to minimize the gramians of controlla-
bility and observability of the extended system of the figure 5.14. one solution is
given by the observer with poles in 5.82 e 182 −−  and the state feedback with
poles in 51.956.9 ±− . This guarantees norms of the uncertainty closed loop op-
erators with values dB25 e ,-450 − .

5.2.2 Robust performances

The extended system applied to external signals has been used to represent perform-
ances in nominal conditions, viceversa applied to uncertainties to derive robust stability
conditions. A perfect duality exists between these two aspects, and the conditions refers
to the same four closed loop operators eqdequeq GGGS ,,, 1 , variously multiplied by
weighting functions. For each performance specification a structure of uncertainty exists
with similar condition, so that a constraint on one of the closed loop operators can apply
either to one of the other of the two aspects of the specifications.
Let observe as an example how performance (5.6) and robust stability (5.16) or control
activity requirements (5.10) and conditions (5.15) are similar. Verify, also, as exercise
how conditions for robust stability in the first and fourth structure, not considered in
section 5.1.2, are equivalent to performance specification involving input and output
disturbances, respectively, versus outputs.
If performance and robustness conditions are jointly present in an extended system we
can guarantee performances in nominal conditions and robust stability, as shown in the
next example.

Example 5.6 Nominal performance and robust stability

Let consider the problem where performances, expressed by (5.5), are joint to the
requirement of robust stability in the presence of multiplicative uncertainty
(5.13).
The two conditions require, as we know:
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These requirements can be merged in a unique operator as shown in the next fig-
ure
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Fig. 5.15 Joint performance and robustness specifications

that from a result of algebra carries to
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More generally , however, we desire that not only stability but also performances are
guaranteed in any uncertainty condition. This is a more stringent result than (5.18) and is
indicated as robust performances.
Not all combinations of the four description of performances and robust stability inte-
grate each other to define to a well posed problem of control with robust performances.
We will consider here only two specific cases: when performance are described by (5.6),
or (5.10) and uncertainty is multiplicative or additive. The next result consider the first
of the two configurations, the other one can be obtained as simple extension.

Theorem 5.2 Robust performances

Let define nominal performances in (5.6)

( ) 11
1 ≤+

∞

−
cGGIW , (5.19)

and describe plant uncertainty in multiplicative form

( ) 1),(,2 <∆∈∆⋅⋅∆+= ∞SRGWIGp

then, sufficient condition to guarantee robust performance is:

( )( ) ( )( )( ) 1)()(sup 1
2

1
1 ≤+⋅++ −− ωσωσ

ω
ccc GGIGGWGGIW (5.20)

where σ  is the maximum singular value of the transfer matrix for any value of w.
Demonstration
Guaranteed performances in any uncertainty condition means

( )( ) ∆∀≤⋅⋅⋅∆++
∞

− ,11
21 cGGWIIW . (5.21)

that can be rewritten as



Performance and robustness in control 125

( ) ∆∀≤⋅⋅⋅∆+⋅+
∞

− 11
21 cc GGWGGIW (5.22)

where, with the loop return difference cGGI ⋅+  as common factor, and remem-
bering a property of max and min singular values of a matrix we obtain
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that proves the theorem.

From (5.20) is evident that robust performance implies robust stability, as well.
Let analyze in more details joint conditions of performance and robustness. We indicate
with

( ) ( ) 1
2

1
1 , −− +⋅=+= ccc GGIGGWBGGIWA (5.24)

the two matrices target of the requirements, and represent the values of the two norms

∞∞ BA ,  or of the two maximum singular values ( ) ( ))(,)( wBwA σσ  on the two
axes of a system of co-ordinate

1

1

{ } 1,max ≤
∞∞

BA

( ) ( )
2
122 ≤+ BA σσ

( ) ( ) 1≤+ BA σσ

 Fig. 5.16 Robust performances

We note that the square of side 1 characterizes the region where jointly nominal per-
formance and robust stability are satisfied, the rectangular triangle with two sides 1
defines the region of robust performance, correctly is included in the first one. Finally

the region delimited by the circle of ray 
2
2  represents a sufficient condition for robust

performance.  This last result is interesting, as it defines a bound on the whole operator
norm
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( ) ( ) ωσσ ∀≤+≤
∞

,1
2
1 22

2

BA
B
A (5.25)

but more restrictive than the original one.
Analogously nominal performances (5.12) stating a joint constraint in the loop sensitiv-
ity and control activity can be cast into robust performances

( )( ) ( )( ){ } ( )( ) ωσσσ ∀+⋅+++ −−− 1
2

1
3

1
1 ,max ccccc GGIGGWGGIGWGGIW .

5.2.3 Structured robustness

In the previous section we have preliminarily analyzed robust performances and stability
in special cases and in the presence of a unique or unstructured source of uncertainty ∆ .
In this section we approach the problem in more general terms, and especially we con-
sider the presence of more independent source of uncertainty as in figure 5.17. This is
called structured uncertainty. Results of this section and formula at the end of the sec-
tion are taken from chapter 11 of [3].

M

z1

)(sGc−

u

w1

y

2∆−
z2w2

1∆−

Fig. 5.17 Structured uncertainty

The advantage to exploit a structure is to offer tighter and more realistic regions in de-
scribing uncertainty, than aggregating all sources in a unique element ∆ .
Theorem 5.2 applied to the operator between the signals 21,ww  and 21, zz  after closing
the feedback

2
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2
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2

1

w
w

GG
GG

w
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G
z
z

eqeq

eqeq
eq ⋅

�
�
�

�
=⋅= , (5.26)

states that to guarantee robust stability the following condition must be satisfied
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If we want to take into account the structure of the uncertainty

1),(,
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the result modifies in the following

Theorem 5.3 Structured robust stability

Let be the transfer matrix eqG  (5.26) asymptotically stable, and two arbitrary

transfer matrices 21 , ∆∆  with the constraint to be proper, stable and with norm
1<∞H , then the feedback is robustly stable is and only if

1,1),(,,1
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0
2121
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1211

2
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GG
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 (5.29)

and, equivalent to the previous condition, there exists an index ∆µ  of the transfer
matrix eqG , called maximum structured singular value, obviously lower than

( )eqGσ , such that

( ) 1≤µ∆ eqG .

Moreover, if ( ) 1>µ∆ eqG  a pair 21 , ∆∆  can always be found for which the feed-
back is unstable.
Finally, in these conditions the norm of each one of the two blocks on the diago-
nal is bounded when uncertainty is present on the other block only:

1),(,1  e  1),(,1 11222211 ≤∆⊂∆∀<≤∆⊂∆∀< ∞∞∞∞
SMSM eqeq GG

It has been proven that the value of ∆µ  is limited by the following inequalities

( ) ( ) ( )eqeqeqMax GGG σ≤µ≤λ ∆ .

Compute the maximum structured singular value is not an easy task, nevertheless, if we
note that result (5.29) remains unchanged with the introduction of a block diagonal ma-
trix D commuting with the uncertainty, and that a loop characteristics is identical irre-
spective from the point we break the loop
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where
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we can obtain an empirical technique to evaluate an upper bound of ∆µ .
Condition (5.30) is true for any D, as long as D commutes with the uncertainty operator
and simplifies, so instead of computing the value of ∆µ  we can compute the lowest
maximum singular value ( )1−⋅⋅ DGD eqσ  as function of D:
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This idea can be applied to any dimension of the structure (number of sources) of the
uncertainty. Unfortunately equality is not reached when structure has dimension greater
than 3, nevertheless, we found in all practical applications remarkable results.
Returning to (5.32), from a result on singular values of structured matrices we can re-
write the upper bound of ∆µ  in terms of the norms of each partition of the matrix
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with

( )
( ) ( ) 0, 2

122
12

2
212

min ≠= eq
eq

eq G
G
G

σ
σ
σ

γ . (5.34)

This result can be specialized to account for different specifications: with the next ex-
ample we will consider a case of multiple uncertainty, in the next section we obtain
robust performances (5.20) with an alternative technique.
As concluding remark, note that the matrix D doesn’t affect the norms of each restriction
on the diagonal of eqG .
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In general we may have multiple sources of uncertainty or the same source repeated on
different channels, the matrix D assumes in general the following form

�
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∆⇔
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�
�
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=
ii

ii
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I
D

D
D

δ
,

1
. (5.35)

Example 5.7 Multiple uncertainty

The considered process has two sources of uncertainty: gain variations, and not
fully specified dynamics. In one of the next chapters this model will be applied to
a concrete control problem. We want evaluate robust stability in the presence of
this structured uncertainty. The system is the following.

      ( ) ( )( )
1,,

1
)1()1(

)(
~

21
1101

2
22

1101
2

22 <∆∆
∆+++

∆+
=

∆+++
∆+

=
Wasass

Wk
kasass

kk
sG

 ( ) 22
01

2
1

1 , kW
asas

k
W =

++
=

We integrate in the same extended system the two sources of uncertainty corre-
sponding to the first and third form of section 5.1.3,

G
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Fig. 5. 18 Two sources of uncertainty

The resulting extended system is
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applying, as usual a lower LFT we obtain for the closed loop
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Applying the result (5.33) the condition for robust stability become

( )( ) ( )( )( ) 1)()(sup 1
2

1
1 ≤+⋅++ −− ωσωσ

ω
ccc GGIGGWGGIW (5.37)

Given the formal equivalence (duality) between performances and robustness
conditions, must not surprise that the result just achieved is identical to robust
performance of the theorem 5.2. This argument will be fully clarified in the next
section.

Example 5.8 Hydraulic motor – nonlinearity treated as multiple uncertainty

Hydraulic servomotor is a classical actuator for power mechanical controls. It is
characterized by a marked nonlinearity. The model will be described in details in
on of the next chapters. Here we present, without justifications the block diagram
showing the nonlinearity.

β+⋅ sm
1q

x�
i + _

iR
PPk −0 A

R
sC 1
1

+⋅

A

P

0P

s
1

x

Fig. 5.19 Block diagram of an hydraulic servomotor

Linearizing the model we obtain the next schema
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Fig. 5.20 Block diagram of the linearized model

Where the linearization parameters 

0
0

0 1

~;1~

P
PP

ik
k

P
Pkk Pi

±⋅

⋅
=±⋅=  are as-

sumed affected by two source of uncertainty

( ) ( )11

22
11 1

~;1~
δ

δδ
d

dkdkk Pii +
⋅=+=

The extended system is contained in the next figure

Fig. 5.21 Extended system of an hydraulic motor representing uncertainty
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The system has a structure as in figure 5.17, where the two sources of uncertainty

are 2211 ;
1

1
δδ =∆⋅

�
�
�

�
=∆

Model parameters can be read from the figure, with equations of the dynamics
given by:
Hydraulics - uxx 82 1010 +−= −

�

Mechanics - uxx 21012.4 −+−= ���

We adopt, as usual, a closed loop control with observer and state feedback as-
signing the poles for the observer 10,100100 −±−  and for the state feedback

5,2020 −±− . The ∞H  norm of the closed loop operator 
�

�
�

�
→�

�
�
�

�

2

1

2

1

z
z

w
w

 as-

sumes the value of 710 . The value of ∆µ  is much smaller and is equal to 35,
computed with the matrix ( )1,3.74,52.2,627,4.78 −= ediagD .
The control isn’t robustly stable, as it can immediately verified by introducing
proper perturbation parameters in the closed loop.
A different control, designed to offer robust stability, using again observer and
state feedback, is obtained minimizing the controllability and observability
gramians of the closed loop9. The closed loop poles for the observer are

6.91,12745 −±−  and for the state feedback 104.0,897.49 −±− , the ∞H
norm of the closed loop is still high ( 6103 ⋅ ), nevertheless the value of ∆µ  is
below 1, computed with a matrix ( )1,58.1,53.2,147,98 −= ediagD . In this
condition the control is robust, as it can be verified experimentally.

Robust performances

The same technique of handling structured uncertainty with multiple diagonal blocks in
∆  allows to approach in more general terms the problem of robust performances, we
have solved preliminarily for a special case previously.
Let go back to figure 5.17, where we hypothesize that the pair 11 , zw  represents per-
formances (sensitivity), while the second pair 22 , zw , together with 2∆ , represents
multiplicative uncertainty, and let approach a robust performance problem.
Theorem 5.3 shows that robust performance can be translated in a problem of robust
stability with structured uncertainty. In fact, 2∆  represents the real uncertainty,
viceversa the block 1∆  is introduced only as a proof that the norm of the performance

                                                          
9 We do not claim that minimizing the closed loop gramians, equivalent to minimize the 2H  norm of the

closed loop operator, is the best thing to do to achieve robustness, as it depends instead from the ∞H  norm.
However it moves in the right direction
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restriction never reach the bound 1. In other words if the structured singular value is less
than 1 robust performance is satisfied, i.e.

( ) 1),(,11 2211 ≤∆⊂∆∀<⇔≤µ ∞∞∆ SMeqeq GG .

The results are applied to a problem of robust performance where requirements are
given to the tracking error with model (5.5) and uncertainty is described by the model
(5.14), The extended system is the following
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Closing the loop, and taking into account (5.3), we obtain
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If we apply to model (5.39) theorem 5.3, using the result (5.33) we rediscover the con-
ditions for robust performance of theorem 5.2. If we adopt, instead, the notation intro-
duced with formula (5.24) the closed loop system can be rewritten as
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Its maximum singular value can be written
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(5.41)

We have found again the result (5.25).

Example 5.9 Position control of an electric motor
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 Fig. 5.22 Armature control of an electric motor

Figure 5.22 contains the block diagram of an electric motor controlled on the ar-
mature. The nonlinearity of the electromechanical characteristics of the motor
suggest to approximate the parameter mk  as ( )∆+ kmk δ1 . The motor shaft is
subject to external torque disturbances and we want to limit these disturbance ef-
fects on the motor output position. Moreover the control activity must be limited.
The resulting extended system is in figure 5.23.

 Fig. 5.23 Extended system of the electric motor controlled on the armature

Parameters are as follows:
•  Motor - 75.0,1 == kmk δ
•  Mechanics - 05.0,05.0, ===+ ββωω JCJ m�

•  Performance weight - uxxW 100:1 +−=�
If we design a control structure with observer poles 65.1,9.20 −−=oλ  and state
feedback poles 21,42.692.5 −±−=cλ  (this choice minimizes the 2H  norm of
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the closed loop operator). You can verify that the ∞H  norm is 141≤
∞eqG , while

the maximum structured singular value is ( ) 63≤∆ eqGµ .
In conclusion the control has not achieved robust performances.
If we try to reduce directly ∆µ  robust performance for this problem may be
reached. The techniques will be lengthily discussed in the main chapter of the
book later.

Computing technique

The diagonal matrix D in (5.31) that approximate the upper bound of maximum struc-
tured singular value can be compute empirically when the structure is square with an
identical dimension of signals w and z, using the following formula:
In the case of two blocks
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In the case of multiple blocks solution is obtained iterating on the following formula
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These formula can be found at page 296 of [3].

5.2.4 Conclusions

The extended system shows to be a versatile tool to unify in a common representation
the envelop of requirements and the different sources of uncertainty present in the sys-
tem of a control problem. Consider each requirement or source of uncertainty in isola-
tion, e.g. disturbance rejection or steady state gain changes, and the restriction of the
closed loop operator referring to the corresponding pair disturbance-objective. If the

∞H  norm of this restriction is less than one performance is satisfied in nominal condi-
tions or robust stability is guaranteed with respect to one source of uncertainty.  When
all conditions are satisfied for each pair disturbance-objective then the design of the
control is inside a hyper-cube with late one as in figure 5.16: nominal performances and
robust stability when only one source of uncertainty at the time is present.
Previous conditions doesn’t guarantee neither that the ∞H  norm of the whole operator
will be less than one, nor that performances are guaranteed robustly. Obviously norm
less than one of the whole operator is a sufficient condition to achieve robust perform-
ances, but it will rarely satisfied. In this case the design is represented by a point located
inside an hyper-sphere, similarly to what is shown in figure 5.16. In the case of a pair of
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independent specification this implies the classical condition (5.41) with a circle of ray

2
2 .

The maximum structured singular value of the closed loop transfer matrix less than one
is a necessary and sufficient condition for robust performance.  The design is repre-
sented by a point inside a polyhedron of unitary axes as the region show in figure 5.16.
An upper bound of the maximum structured singular value (offering, hence, just suffi-
cient conditions) can be tested minimizing the ∞H  norm of the operator weighted by a
diagonal matrix as shown in the inequality (5.32).

5.3 Bibliography

[1] P. Colaneri, J. C. Geromel, A. Locatelli, “Control Theory and Design: an 2H  and

∞H  viewpoint” Academic Press, S. Diego, 1997
[2] G. Zames, “On the input-output stability of nonlinear time varying feedback systems,
parts I and II” IEEE trans. Auto. Control, vol. AC-11(2), pp. 228-238, AC11(3) pp. 465-
476, 1966.
[3] K. Zhou, J. Doyle, K. Glover, “Robust and Optimal Control”, Prentice Hall, Upper
Saddle River, N. J. 07458 1995


