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FOREWORD

Automatic control theory is evolved from its first formulation for more than fifty years
in the last half of the past century. Frequency domain was the first representation of
dynamical systems used for analysis and design of feedback control systems, and from
that period formalisms and criteria introduced by Bode and Nyquist become classical.
Successively state variable representation was introduced and paved the road to opti-
mum control, Linear Quadratic optimum control, until the robust control based on ∞H
norm of the present days.
It is surprising that, in spite of the richness of the modern results and the well known
limitations of the frequency domain, it is customary to start the curriculum on automa-
tion with a first course of automatic control that still maintain the classical setting older
than fifty years (in reality the very first is a course of system theory but it mostly copes
with modeling dynamical systems). To the more modern contents are devoted successive
courses, almost considering them as a specialization. Moreover non-specialists, still
continue to use classical frequency based techniques, even if is commonly accepted their
shortcoming outside the SISO systems.
Reason for that are dual:
From the one side frequency domain is a custom culture in the electronic field where
most of the control practitioners come from, moreover, paper and pencil Bode and Ny-
quist techniques are promptly catch by neophytes, and offer immediate results.
From the other side modern techniques, based on state variable representation in the
present formulation look more like mathematical exercises than engineering instruments,
are fairly complex requiring a strong background on algebra, and finally lack robust and
easy to use numerical algorithms for synthesis. Tools available are still difficult to use.
The objective of this book is ambitious: bring modern techniques based on robust con-
trol in the first course of automatic control substituting frequency domain methods. We
intend to achieve this result by emphasizing exclusively the intuitive aspects present in
the available approach, by reducing algebra results, and especially (quadratic) optimiza-
tion, as pure implementation aspects hidden in the numerical algorithms, in the same
way that people scarcely know numerical algorithms for computing matrix eigenvalues
even if they currently use them.
To be useful, design techniques must be accompanied by specific numerical tools for
synthesis easy to use and reliable in order to achieved immediate and complete results.
Obviously the approach starts directly from MIMO systems. SISO systems in the fre-
quency domain are exclusively introduced as a special case to help to visualize concepts
such as loop function, sensitivity function, frequency band and to allow to see the fre-
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quency interpretation of the ∞H  norm, but they are immediately transferred for any
practical purpose to the state space.
The steps followed for the development of the program are fours:
1. Formalisms and definitions

•  The concept of input-output operator of asymptotically stable linear invariant
systems must be understood, as well as its 2H  e ∞H norms;

•  Additive, multiplicative noise (process uncertainty, in general) and control
specification are added to the model employing the extended system represen-
tation, where input, disturbance, objective and measure are evidenced;

•  With the extended system, coping with uncertainty, the concept of robust sta-
bility is introduced through the small gain theorem. This theorem substitutes
the Nyquist criterion;

•  From additive disturbance descends the concept of performance that substitute
classical results on disturbance sensitivity in the closed loop;

•  Block diagrams give the way to linear fractional transformations.
2. The measure of achieved performances

•  Observability and controllability gramians will play an important role to assign
a measure to state observability and controllability; to compute them very ro-
bust numerical solutions of Lyapunov equations are proposed;

•  From the gramians directly descend the 2H  norm of the closed loop dynamical
operator;

•  A  little less directly, through the worst case disturbances, the definition of up-
per bound of the ∞H  norm is also given;

3. Observer and state feedback
•  The two problems are presented exploiting duality and the definition of trans-

pose system;
•  Output feedback through concatenation of observer and state feedback and the

separation theorem are a background from system theory;
•  In the realm of the separation theorem we show how observer-state feedback

structures allow to achieve generic disturbance sensitivity reductions and ro-
bustness improvement by directly operating on the gramians; in particular, we
teach how to build monotonically decreasing sequences of gramians starting
from a stabilizing solution; this result is provided by one of the theorems re-
lated to the algebraic Riccati equation, even if this equation is never explicitly
mentioned;

4. Output feedback synthesis as two steps in cascade: design of the observer and from
this the state feedback.
•  The envelop of control specifications results in the extended system for the de-

sign, and the assignment of a bound for the ∞H closed loop norm for guaran-
teeing the achievement of a desired level of performance/robustness;

•  The observer is designed first by guaranteeing an assigned upper bound of the
∞H   norm operator from disturbances to the errors of estimating the objec-
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tives. This is achieved by making small a measure of a particular controllability
gramian of the estimation error operator;

•  This observer in the worst disturbance case results in a model for designing a
state feedback, where the estimation errors of the measures play the role of in-
put disturbances, the objectives are the estimated objectives and the state esti-
mates are directly available for feedback ; we call this the “black box model”
for our control problem, as the closed loop performance it achieves, under cer-
tain conditions, guarantees the one when the observer-state feedback will be
applied, as an output feedback, to the real plant. State feedback design is done
operating on a measure of the closed loop observability gramian with duality
with respect to the previous step;

•  The performance of the overall control, obviously, cannot be lower than the er-
rors in estimating the objectives offered by the estimator  – hence, if a state
feedback of the black box model can be found with a ∞H  norm performance
not worse than the bound achieved on the estimation error, the closed loop is
nominally stable and this bound is also guaranteed for the performance
achieved by applying the observer-state feedback to control the plant; this is
our interpretation of the different theorems at the basis of the theory of robust
control with ∞H  norm.

This book doesn’t offer new results on robust control theory, compared with the results
already available on the literature. Viceversa, literature results are filtered, and for the
few strictly needed, simple and intuitive proofs are given, even if not completely rigor-
ous.
The true contribution we offer is to link punctually design techniques to the complete set
of engineering specifications, the designer is used to in classical feedback control ap-
proaches. We adopt from the beginning the concept of gramians and we develop it to the
analysis, evaluation of performances, up to the synthesis that is fully based on gramian
computations. For this we could almost call this book  Robust Control – an approach
based on gramians.


