
Chapter 2
SAMPLED DATA SYSTEMS

Controls, with minor exceptions, are today performed using the computer, and the com-
puter handles sampled data signals. This requires to understand the behavior inside a
closed loop control of sampling.
Selection of the sampling period, treatment of disturbances and plant high frequency
dynamics are engineering problems by themselves. However, once the selection has
been performed, the measurements have been conditioned and a discrete time model has
been derived design techniques are fundamentally identical in the continuous and in the
discrete case. In one case we are dealing with differential equations, in the other with
difference equations, and two parallel treatments can be conducted. We must not ignore,
however, that the control loop remains an hybrid system where the process is continuous
and only the controller is realized with digital filters. For this reason, we have main-
tained a connection between the two views translating the continuous model into a sam-
pled data one, understanding the differences introduced by a digital filter with respect to
the more classical analogue one, but continuing to think in term of continuos systems.

2.1 Dynamic sampled data systems

In a digital control system the computer generates internally at discrete intervals of time
the sequence of samples of the reference signals, receives in input the samples of the
measurements performed on the process, and offers in output the samples of control. We
assume here that the sampling period is constant and unique, and measurements and
control are performed synchronously, each sample, at the same instant. Samples of
measurements are obtained through analogue to digital converters, data are processed, in
negligible time, in order to generate a sample of control transferred to a digital to ana-
logue converter that reconstructs from the samples a continuous like signal to control the
process.
In these conditions the input signal )(tu  is obtained through a process of reconstruction
(conversion digital to analogue) from the sequence of samples )(ku  at the instants of
time kt ⋅∆= . On the other side the signals in output from the process )(ty  are trans-
ferred to the digital controller through an analogue to digital converter in the form of
samples )(ky . Figure 2.1 represents a digitally controlled system with measurement
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samples )(ky , the control samples )(ku  processed by the computer and the recon-
structed signal )(tu  at the exit of the D/A converter.
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  Computer
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Fig. 2.1 Digital control and signal sampling

We find now for this system the relationship between the different sequences of samples
)(ku , )(kx , )(ky  input, state and output of the process.

Sampling a signal is immediate: samples )(ky  are the values of )(ty taken at instant of
time multiple of the sampling period ∆ .
Reconstructing a signal is a more complex process. A continuous function must be se-
lected, called reconstruction or interpolation function, generate with this function a
basis obtained by delaying the basic function of multiple of the sampling period and
finally reconstruct the signal as a linear combination of the basis weighted by the signal
samples:
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For real-time control we need that the interpolation function be casual and to maintain
the integral in time before and after the reconstruction approximately identical we im-
pose that:

+∞
∆=τ⋅τψ
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For simplicity we consider functions different from zero only in the interval [ )∆,0 . The
reconstruction (2.10) assumes the form:

)1()()()( +⋅∆<≤⋅∆⋅⋅∆−ψ= ktkkukttu . (2.11)

We will consider two cases of interest: the reconstruction function is the unitary impulse
of Dirac, and the unitary rectangle:
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where )(0 tu  is the unitary step.
In the first case the reconstruction generates a sequence of pulse modulated by the sam-
ples spaced by ∆ , we call a train of pulses:

∞

=
⋅∆−δ⋅∆⋅=

0
)()()(

k
ktkutu ;

in the second case a step wise constant signal.
Let analyze the response of a dynamic system driven by a previously reconstructed sig-
nals.
The system is given in the classical state variable representation
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The state transition from instant t to instant ∆+t  is
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hence, considering the only instants of time multiples of ∆  we have:
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Equation (2.13) shows that a system described by a state representation (2.12) receiving
in input a signal obtained from a reconstructor behaves at the sampling times identically
to an equivalent discrete time system with the following equations:
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By comparison between (2.12), (2.13) and (2.14) is immediate to verify the following
equalities:

DDCC ==                                    (2.15)

∆= AeA (2.16)

The matrix B  for the two types of reconstruction function considered is respectively:

torreconstruc  pulseBeB A ⋅⋅∆= ∆ (2.17)
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Let note, finally, that if the matrix A is invertible, for a step reconstructor:

BIeAB A ⋅−⋅= ∆⋅− ][1 . (2.19)

If we remember that the exponential function can be expressed by the Taylor series:
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the two previous expressions of B  become:
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For small values of ∆  stopping the series at the terms of first order both result in:

BBAIA ⋅∆≅∆⋅+≅ , . (2.22)

This is exactly what we found in the introduction by approximating the derivative to first
order differences.
As a matter of fact, the interpolators commonly found in commercial D/A converters are
of the step type, hence, (2.14) is the exact system response, at least at the sampling
times. The resulting discrete time system in difference equations can be used directly for
the design with algorithms strictly similar to the continuous case. For the analysis, how-
ever, the situation is more complex, as we loose in the discrete time system the connec-
tion with frequency. The next sections will be devoted to regain a connection between
the two visions of the model.

2.2 Frequency analysis

The previous section showed how the dynamic system is viewed from the digital con-
troller. In this section the dual view directly of the continuous system subject to sampled
control is developed. The results are taken from [1].
In the sampled data control loop are present two types of signals: continuous time and
sampled data, that have in the D/A converter their contact point. We will adopt as recon-
structor the rectangle, it also called zero order hold (ZOH). The mathematical technique
to relate the two types of signals is to imagine the converter divided in two steps:

• a pulse sampler where the samples )(ku  are initially converted to a train of

modulated pulses )(ˆ tu  with Laplace transform indicated with )(ˆ sU ;
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• an holding filter that receives the train of pulses in input and gives in output the
reconstructed signal. The input is )(ˆ tu  the output is the signal )(tu  with Laplace

transform )(sU .

The two phases of reconstruction are presented in figure 2.2 where you find an ideally
continuous signal )(tu , the sequence of its samples )( ∆ku , the output )(ˆ tu  of the
modulator, the output )(tu  of the reconstruction filter.

modulator )(sGh )(sG
)(tu )( ∆ku )(tu )(ty

)( ∆ky

)(ˆ tu

Fig. 2.2 Detailed schema of a D/A converter

2.2.1 Sampling a signal

The reconstructed signal using a step interpolator, given from (2.10), can be written as
follows
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The Laplace transform of this signal is
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This transform evidences the analytical relationship between )(ˆ tu  and )(tu  of figure 2.2

showing the transfer function )1(1 ∆⋅−−⋅ se
s

 of the step reconstruction filter.
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2.2.2 Pulse modulator

The train of modulated pulses )(ˆ tu  is the mathematical artifice needed to relate the two
spaces of sampled data and continuous signals.
This signal can be represent in three different forms, each one emphasizing a different
property.

Representation using the Fourier series

This form shows that the pulse modulated signal has a transform that is periodic in the
frequency axis. It is obtained by the doubly infinite series built from the transform of the
continuous signal translated on the ωj  axis.

Let be ∆  the sampling period and 
∆
π=ω∆

2  the sampling pulsation.

The bilateral train of unitary pulses can be represented as
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The pulse modulated signal can be written as the product between )(tu  and )(t∆δ
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The transform of the pulse modulated signal can be represented in term of the transform
of the original continuous signal shifted on the ωj  axis by multiples of ∆ω . We note a
few properties:

•  The resulting transform is periodic on the imaginary axis, in particular the
modulus is an even function and it phase is an odd function in ω.
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•  If the original signal has rational transform any pole iλ  of )(sU  is related

to a doubly infinite series of poles �,2,1, =⋅± ∆ iiji ωλ .
Let see in an example how the behavior in frequency of the transform of a signal
changes with sampling.

Example 2.1 Behavior in frequency of the transform of a modulated signal

Let the signal transform be

( )( )24.12.0
1)(

2 +++
=

sss
sG (2.23)

sampled with a train of modulated pulses of period 5.1=∆ . In figure 2.3 are
shown real and imaginary parts of the transforms for ωjs = : with a continuous
line the continuous signal divided by ∆  in the interval ∞−0  and with dashed
line the pulsed signal in the interval ∆ω−0 .
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Fig. 2.3 Polar plot in frequency of a pulse modulated signal

Z transform

This form shows how the transform of a pulsed data signal can be explicitly represented
from the samples in time of the signal.



34 Automatic control

The signal is given now as a sequence of pulses translated in time
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Defining with 1−z  the transform of the operator that delays a signal of one sample in
time

∆⋅−− ≡ sez 1

it results the definition of Z transform of the sequence of samples, counterpart for the
discrete time of the Laplace transform
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Hence, the transform of the pulse modulated signal can be represented in term of the Z
transform

∆⋅=
= sez
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by exploiting the change of variables ∆⋅= sez .
This relationship allows to regain the frequency interpretation of a sampled data signal.

Representation using the convolution integral

This third form is useful to show that sampling a signal having rational Laplace, the Z
transform of the sampled signal is still rational.
As the modulated signal is the product of two signals, its transform is the convolutions
of the transforms of the two signals
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The convolution product is computed by the circular integral covering the region of the
plane s which contains zeros and poles of U(s), and choosing c in order to isolate the

doubly infinite series of poles of ( )pse −∆−−1
1

.
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Let assume, for simplicity, that all poles of X are isolate, we have
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This result exhibits the relationship between rational transform of a continuous signal
and the Z transform of the pulse modulated signal. The poles of the Z transform are
obtained from those of the Laplace transform through the mapping ∆⋅= sez .

Relationship between s and z planes

In this section we outline the relationship between the two planes s and z introduced by
the mapping ∆⋅= sez .
The imaginary axis of s (the frequency axis) is transformed in the unitary circle in z, the
left semi-plane containing singularities of the transform with negative real part is
mapped to the interior of the unitary disk. The frequency value is read from the phase in
radiant of the points of  the circle

∆⋅= wϑ
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Fig. 2.5 Relationship between the planes s and z

The same mapping relates the poles of the transfer functions in the two realms; for real
poles:
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2.3 The control loop in the presence of sampling

Gh )(sG_+

)(se )(ˆ se)(sr )(sy
)(sG′

Fig. 2.6 Feedback loop in the presence of sampling

Using the transform of sampled data signals we can now analyze the behavior of a con-
trol loop. Let start from a simple case were the error signal in closing the loop is sam-
pled and a reconstructed before applying it to the system. The reconstruction filter is
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isolated from the sampler and integrated with the continuos plant, so we can write the
output of the system as:
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In general the pulse transform doesn’t commute with the product of functions, i.e.
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however, if we sample )(sY  in (2.24), as one of the two functions is already pulse sam-
pled, the following result holds
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Equation (2.25) shows that the closed loop behavior in the presence of sampling, its
stability in particular, depends on the loop function )(ˆ sG ′ , the pulse transform of the
continuous plant cascaded by the holding filter.
In a more realistic situation the control samples before reconstruction are obtaining by a
digital filter implemented in the computer

)(zGc_+
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)(sG
u

)(sGh

Fig. 2.7 Control with digital filter

Remembering that the Z transform of a digital filter can be interpreted as the pulse trans-
form of a corresponding continuous system, this is equivalent to image a second pulse
sampler before the filter.  The loop assume the configuration of figure 2.7 and the loop
transfer function becomes



38 Automatic control

∆==

′⋅=

sezcc

ca

zGsG

sGsGsG

)()(ˆ
)(ˆ)(ˆ)(ˆ

(2.26)

2.3.1 Characteristics of )(ˆ sG ′

To have a better understanding of )(ˆ sG ′ , and to compute it exactly or approximately we
offer here a few techniques.
We know that )(ˆ sG ′  is the result of a series built from the function )(sG ′  translated
along the axis jω
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 and ignore the contributions of all elements of the series with the exception of the cen-
tral one, we have for the first half of the sampling frequency (we already know that the
function is periodic)
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The exact representation of )(ˆ sG ′  can be obtained through standard Z transform, re-
membering that

sezzGsG
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Alternatively, we want to mention that G(z) can be obtained from the Z transform of the
state representation (2.14) using a ZOH reconstructor, i.e.

( ) BAzICzG 1)( −−= .

For an approximate solution of the transfer function it is also possible to adopt an ele-
gant result of Åström [2]
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The Z transform of a transfer function proper and rational of order n, with ZOH filter
has n poles obtained from the continuous system with the usual mapping and n-1 zeros
that asymptotically for ∆→0 assume the following values:

•  m zeroes are the mapping of the corresponding continuos zeroes as for the
poles;

•  the n-m-1 remaining zeroes are fixed roots of the following polynomials:
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Example 2.2 The transfer function of a sampled data system with hold filter

Let the system be
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select a sampling period of 5.0=∆ . Compare the continuous and sampled data
cases, with exact solutions or different approximations  according to (2.27) or
exploiting the formulas of Åström.
In this case all approximations of the transfer function are good. The frequency
behavior of the sampled data system is different from the continuous one, and
this must be accounted for in designing the control.
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Fig. 2.8 Sampled data system with its approximations

2.3.2 Approximation of the delay operator

We recall a classical approximation formula for the delay operator:
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In particular, when the delay is of one sampling period:
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2.3.3 Implementing digital filters

The most effective way of implementing a digital filter is through its state variable rep-
resentation. For SISO system the transfer function can be used, as well, remembering the
relationship between 1−z  and the unitary delay.
Let be a proper filter given by
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if we divide numerator and denominator by z at the highest power we obtain
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and transforming the signals to the sample space
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Implementing recursively previous algorithm generate the digital filter.
For numerical reasons, due to the number of significant digits of the parameters, the
digital filter is usually realized decomposing its transfer function in  first and second
order blocks in cascade or in parallel.
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Fig. 2.9 Structure in cells of a digital filter

Each elemental cell is of the type:
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using one of the canonical forms discussed in the next chapter 4, e.g. the control form:
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Fig. 2.10 Elemental cell of a second order digital filter
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