


Chapter 3
DYNAMICAL SYSTEMS AND FUNCTIONAL SPACES

The performance of a controlled system is evaluated from its response to external inputs.
They may be external disturbances and we want a small sensitivity of the controlled
outputs from disturbances; or reference signals and we want a small tracking error.
These signals may be the consequence of uncertainties or approximation errors between
process and model (multiplicative disturbances), and we want that they do not affect
closed loop stability of the plant, once the control design guarantees nominal stability
for the model.
To quantify the desired performances it is necessary to assign measures to inputs and
outputs signals.
Defining signals on proper linear spaces, different types of measures can be defined, e.g.
measuring the energy of a signal, its power, its maximum value in frequency. These
measures are called norm, and generalize the classical concept of distance in the vector
Euclidean spaces.
A dynamic operator in its transformation establishes a mapping between an input and an
output signal space. The definition of a norm on each one of the two spaces induces a
norm, as well, on the dynamic operator. This induced norm can be consider for all prac-
tical effects a generalization of a gain as we intend it in electronic amplifiers.
The induced norm of the controlled dynamic operator will become the fundamental
element to establish and verify performances of our control design.
This chapter presents the view of dynamic systems as input-output operators introducing
a transformation between two spaces of functions, defines the signal norms of interest
for our approach, and shows how to compute them. These results will be needed for the
analysis and design of the successive chapters. The operator norm adopted will be 2H
and ∞H , the subject can be found on almost all texts of modern system theory and of

∞H  robust control, e.g. [1] [2]. Specifically for more details we suggest reference [3]
that we followed for our elemental introduction.

3.1 Norm in functional spaces

A linear space of functions is a set whose elements are scalar, vectors, or matrix of real
or complex function of an independent variable that can be real or complex. In the case
of signals they will be function of time defined in the interval ),( +∞−∞ , or more usu-
ally, for causal signals, in the interval ),0[ +∞ . When we deal with the transform of sig-
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nals they will be complex functions of the variable s  ranging on the imaginary axis jw
or z ranging on the unit circle ∆jwe .
Different types of norm can be defined over these spaces of signals. The norm is a func-
tion, indicated with ⋅  that associates to each element u of the space of functions a real
value with the following properties:
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We will be interested in three different classes of signals:
•  finite energy signals, with the 2H  norm, that measures the integral in frequency of

the signal transform equivalent to the energy of the signal,
•  signals finite in frequency, with the ∞H 5 norm,  that measures the maximum

modulus in frequency of the signal transform.
•  finite power signals, with the semi-norms P and S, that measure average power of

a signal.

3.1.1 The norm 2H

The scalar case

The 2H  norm applies to the space of functions with finite energy

2
1

0

2
2

)(
�

�
�
�

�
=

∞

ττ duu . (3.2)

For these signals the transform is rational, becomes zero at infinite and it is bounded in
the right half plane, i.e. the transform is strictly proper and has no poles in the right
plane extended to the imaginary axis. For the Parseval theorem the norm can be written
also
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The vector case

In the vector or matrix case the norm 2H  assumes the following form

                                                          
5 The symbolH  derives from the name of the mathematician Hardy that studied these spaces
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where *U  is the transpose complex conjugate of U  and tr(.) indicates the trace of the
argument matrix, defined as the sum of the diagonal elements of a matrix.

Example 3.1 Trace of the square form )()(* ωω jUjU ⋅

Let consider the transfer function matrix
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note that
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3.1.2 The norm ∞H

Scalar case

This norm is defined in spaces of functions having a rational transform, bounded in the
right half plane comprehensive of the imaginary axis, i.e. the transform is proper without
pole in the right plane. The ∞H  norm is defined as the maximum absolute value of the
signal transform on the ωj  axis.

)(sup ω
ω
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(3.8)

With the previous properties (proper transform without poles in the right hand plane) it
is demonstrated that this norm is also the maximum of the absolute value of the function
over the whole right plane.

Theorem 3.1 Maximum modulo
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If  U(s) is continuous and bounded in the right half plane, then the maximum of
the absolute value of the function is reached on a point of the boundary, i.e. the
imaginary axis
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If this result is applied to the transfer function of a proper stable dynamic system the
norm  represent the usual maximum gain in frequency of the system.

Example 3.2 Frequency gain of a dynamic system.

Let the system have the following transfer function:
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the absolute value in frequency of the transfer function is given by the next figure
where the ∞H  norm is indicated
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Fig. 3.11 Gain in frequency of a dynamic system

Let note that the space ∞H  contains signals with finite energy, i.e. ∞⊂ HH 2 .

Multivariable case

For vector or matrix functions the ∞H  norm has the following definition:
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where )(ωσ  is the maximum singular value  of the argument matrix for every value of
ω.
Information of the singular values of a matrix are contained in the last section of this
chapter. Intuitively the maximum singular value )(ωσ  of a transfer matrix has the same
interpretation of gain in frequency of a scalar system.

3.1.3 Power and power spectra

Scalar case

Measures related to the power of a signal are used  when its energy is not finite. They
are not properly norms as condition 2 of  (3.1)  is not satisfied , for this reason they are
indicated as semi-norm.
We start recalling the definition auto-correlation function of a signal
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When the Fourier transform of the auto-correlation function (3.12) exists:
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this transform is called the power spectra  of the signal.
Conversely, the auto-correlation function, when it exists, can be obtained as the inverse
transform of the power spectra of the signal
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The power of a signal is defined as
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and can be computed from the root square of the integral in frequency of the power
spectra.
In order to have finite power the power spectra must be a rational strictly proper func-
tion.
Alternatively, when the power is not bounded, a second measure related to the power
spectra can be defined (this also is a semi-norm) as the maximum modulus in frequency
of the power spectra:
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These measures are useful when the disturbances applied to the system are stochastic
processes.

Example 3.1 White noise

The white noise is an especially useful abstraction to represent noise spanning
over a large range of frequency and it used to model input and measurement
noise. Its auto-correlation function is a Dirac pulse of amplitude 2σ , the noise
variance. Its power spectra is constant in frequency with value 2σ . For this signal
only the norm 

Su  is defined:

σ=
S

u (3.17)

which is the signal standard deviation.

Example 3.2 The colored noise

The colored noise is the one spanning over a well defined range of frequencies. It
can be described as the output of a dynamic system to an input white noise of
unitary variance.

wGu ⋅= (3.18)

Its power spectra is given from the square form obtained from the transform of
the filter coloring the noise.

GGjSuu ⋅= *)( ω , (3.19)

Existence of the norms Pu  and Su  for these signals depends exclusively from
the coloring filter. In fact their values coincide with the norms ∞HH  e 2  of G, re-
spectively.

Multivariable case

The multivariable case is treated similarly to the previous sections
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3.2 Induced norm over the dynamic operators

A dynamic system can be interpreted as an operator transforming signals from input to
output spaces.
Both signals and systems enjoy two equivalent representations in the time and in the
transform (frequency) domain.
In the time domain let indicate with g(t) the pulse response of a system, the input-output
relationship is given by the convolution integral
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In a frequency representation the input-output relationship is the algebraic product of the
transforms

)()()( sUsGsY ⋅= . (3.23)

If two norms have been defined for both input and output spaces an operator g is said
limited if it exists, based on these two norms, a constant value M such that

U∈∀≤∗= uuMugy (3.24)

Then the norm of the operator is defined as the smallest value of M that verifies the
inequality. For linearity the norm can be defined also as
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This norm can be interpreted as an upper bound of the gain of the system, indicating the
maximum ratio between the norms of output and input.
Obviously, only strictly stable systems have a finite norm, in the other cases a finite
input can always be found which drives the output to infinite.
So, with an alternative definition of stability, we call systems that guarantee for finite
inputs finite outputs BIBO stable (bounded input-bounded output), and for those system
the norms defined for input and output induce a norm for the operator.
The next table shows which is the induced norm of the operator for different norms in
input and output.
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From this table is evident that signals measured by their energy, power or maximum of
the power spectra all induce for the operator the norm ∞H , that is the maximum abso-
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lute value in frequency of the transform representation of the operator. This explains the
special interest that norm ∞H  will have in our presentation.
The next sections will be devoted to the computation of the norm with a special interest
in the gramians of a dynamic system, discussed next.

3.2.1 Observability and controllability gramians

To approach the computation of the 2H  and ∞H  norms it is convenient to introduce
preliminarily the definitions of observability and controllability gramian of a dynamic
system [4].
Let think to the free response of a dynamic system as a mapping from the Euclidean
space nℜ  of the vectors of initial conditions )0(x  to the space of the output signals in
the time interval [ )∞,0 , or, dually, to the forced response as a transformation from the
input signals in the interval ( ]0,∞−  to the Euclidean space of the final state conditions

)0(x . We can assign to these two transformation a norm, in particular the one induced
by adopting the 2H  norm for input and output spaces and the Euclidean norm for the
state space. The first of the two transformations refers to the system observability pair
( )CA,  with the following result
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where X  is a symmetric positive semi-definite matrix and Xρ  is its maximum eigen-
value (for symmetric positive definite matrices it also coincides with the maximum sin-
gular value).
The second transformation refers to the controllability pair. For duality and operating on
the transpose system ( )BA ′′,  can be determined in a completely analogous way the fol-
lowing result

( )

202
1

2

00
0

00
2

2

0

0

,

xu

xYxxdteBBexu

xeBtu

Y

tAAt

tA

′≤′

≥′′′=′⋅′⋅′′=′

′′=′
∞

′

′

ρ

(3.28)

where x′  and u′  are states and output of the transpose system,Y is a symmetric positive
semi-definite matrix and Yρ  its maximum eigenvalue.

Note 3.1 Controllability gramian Y
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The physical interpretation of the controllability gramian Y  introduced by duality
is not as immediate as the one of observability,. To evidence the interpretation let
consider the forced response obtained by applying an input signal in the interval
( ]0,∞−  reaching final conditions 0)0( xx = .
It is demonstrated that
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u
(3.29)

the input signal with minimum norm able to carry the state in 0x  is linked to the
inverse of the controllability gramian.

Xρ  e Yρ  are, respectively, a norm for the two matrices X e Y, and their square roots are

the norms of the transformations (3.27) e (3.28), induced by the norm nℜ  for the state
space and the norm 2H  for the input and output spaces.
The two matrices X e Y are called the gramian of observability and controllability of the
system.
To compute the gramians the two matrix linear equations (3.30) have to be solved. They
are called Lyapunov equations:
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A numerically robust algorithm for solving Lyapunov equations, adopted in the G++
environment, is proposed in Appendix 2.
The two norm are also a measure of observability and controllability of the state space.
In fact, if the system state space is weakly observable X is close to zero, similarly for Y
when referring to controllability. Moreover, if a subspace of the state space becomes
unobservable, e.g. at the change of some system parameters, one or more eigenvalues of
X (related to that subspace) go to 0, and identically for the controllability subspaces.
Finally, if we are able to assign to the values of the gramian of a given system an order-
ing at the change of system parameters, with the following property
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then the gramian itself can be assumed as a measure of observability or controllability of
the system space to the changes of the parameter, as the ordering establishes a uniform
dominance relationship between all eigenvalues of each pair of gramians.

3.2.2 Computing the 2H  norm

Table (3.26) shows that the 2H  norm is of little use, as induced norm of an input-output
operator.  Nevertheless it has a great importance because it is linked to the system
gramians, it is easy to compute, and offers a first hand indication of the system gain.
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Finally it is the media to evaluate guaranteed bounds of the ∞H  as will be discussed in
the next section.
The fundamental result is that the 2H  norm of a dynamic system with a state space
representation is given by:
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In the next section we show how gramians and 2H  norm can be used to design state
feedback controls.

Minimization of the gramian norms

Let consider a dynamic system given by
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where z are the objectives, w the disturbances and u the controls.
Let assume that D is full rank, and for simplicity that the condition IDD ='  is satisfied
If these conditions are not satisfied fictitious outputs can be added to the objectives and
proper transformations defined on the objective and control spaces. Let control the sys-
tem with a state feedback Hxu −= . The resulting disturbances-objectives operator in
closed loop is given by:
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By changing H we can determine the control that minimizes the observability gramian of
the closed loop pair

( )DHCBHA −− , (3.35)

in other words we want to reduce the sensitivity of the objectives with respect to the
disturbances by minimizing the observability measure from the objectives of the state
space driven by disturbances. This, for the (3.32), coincides also to minimize the 2H
norm of the closed loop operator (3.34) between disturbances and objectives.
The observability gramian X of (3.35) is given by

( ) ( ) ( ) ( ) 0=−′−+−+′− DHCDHCBHAXXBHA . (3.36)

The value of H that minimizes the norm of X is given by

XBCDH ′+′= (3.37)

as is formalized by the next theorem.

Theorem 3.2 Minimizing the observability gramian [5]
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If the pair ( )BA,  is stabilisable and IDD =' , starting from an initial value of the
feedback H, 0HH = , that stabilizes the closed loop system, then a sequence of
Lyapunov equations obtained with feedback matrices iH  given by

( ) ( ) ( ) ( ) 0=−′−+−+′− iiiiii DHCDHCBHAXXBHA (3.38)

�,2,1,0,1 =′+′=+ iXBCDH ii (3.39)

generates a monotone decreasing sequence of gramians converging to the mini-
mum

XXXX i ≥≥≥≥ �10 (3.40)

hence, also the sequence of maximum eigenvalues of iX  is monotonically de-
creasing

XXXX i
ρρρρ ≥≥≥≥ �

10
(3.41)

Note 3.1 Special case 0=′CD

Note that previous result simplifies if 0=′CD

( ) ( ) 0=′′+′+−+′− iiiiii DHDHCCBHAXXBHA (3.42)

�,2,1,0,1 =′=+ iXBH ii (3.43)

Corollary 3.1 Minimizing the 2H  norm of the disturbance sensitivity operator

The feedback H that minimizes the observability gramian X of (3.34) minimizes
also the 2H  norm of the closed loop operator.
Demonstration
The demonstration is immediate considering from the (3.32) that any feedback
different from the optimal guarantees

BXBBXB opt
TT ≥ . (3.44)

Previous results are interesting because they show that the objective of minimizing the
2H  norm of a state feedback dynamic operator is achieved by making as more weakly

observable as possible the state space of the closed loop system from the objectives.
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3.2.3 Computation of the ∞H  norm

For SISO systems the norm ∞H  of the input-output dynamic operator is given by the
maximum absolute value in frequency of its transfer function. For MIMO systems the
maximum modulus is substitute by the maximum singular value of the transfer matrix.
With a state space representation no algebraic techniques are available to explicitly
determine this norm, at difference than the 

2H  norm. It is possible, however, verify if
the norm is lower than a predefined upper bound. In this check the system gramians
play, again, an important role, how the following theorem shows.

Theorem 3.3 Upper bound of the ∞H  norm

If the ∞H  norm of a dynamic system with input w  and output z
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is bounded by a value γ :

γ<
∞

)(sG (3.46)

then it is verified:
( )Dσγ > (3.47)

and the observability gramian X related to the following dynamic system must
exist

B
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Fig. 3.12 Observability Gramian to evaluate the upper bound of the ∞H  norm

0=′+′++′ CCRLLXAXA (3.48)

with
( )XBCDRLDDIR ′+′=>′−= −12    e   0γ (3.49)
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Moreover, BLA+  is a stable matrix, and the gramian X reaches for the specified
value of L its maximum.

Note 3.2 Special case 0=D

Previous formulas simplify in the special case 0=D , becoming
XBL ′= −2γ (3.50)

Demonstration

A simplified demonstration of the theorem is the following:

through algebraic transformations exploiting relations (3.49), equation (3.48) can
be rewritten as

( ) ( ) ( ) ( ) 02 =+′++′−++′+ DLCDLCLLBLAXXBLA γ (3.51)

It is proven, first, that BLA+  is the coefficient matrix of a stable system and X
reaches its maximum.  It is observed that the Lyapunov equation, linear in X, it
can be rewritten as:

( ) ( ) ( ) ( )
( ) ( )
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DLCDLCBLAXXBLA
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ww
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where zX  is the gramian linked to the system output z, alone, and wX  is the one
linked to the signal wγ  when Lxw = , as shown in figure 3.13.
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Fig. 3.13 Testing the upper bound norm - interpretation of the observability gramian

An arbitrary signal w  can be expressed in the form wLxw ~+= , with a proper
choice of w~ , as shown in figure 3.13. In particular if we analyze the response of
the system when Lxw =  ( 0~ =w ), in the presence of initial conditions 

0x , and we
indicate with ∗z  and ∗w  the signals in these conditions we have, for the definition
of gramian and the (3.52),

00

2

2

22

2
Xxxwz ′=− ∗∗ γ (3.53)

Moreover, because the gramian reaches the maximum with the choice Lxw =  also
the difference 2

2

22

2

∗∗ − wz γ  reaches the maximum. For any other choice of w

(obtained e.g. with a different value of L or perturbing the solution adding an ex-
ternal signal wxLw ~~ += ) we will have

00
2

2
22

2 Xxxwz ′≤−γ (3.54)

In particular if 00 →x , previous result demonstrates the theorem

2

2
22

2 wz γ≤ . (3.55)

The formalization that L given by (3.49) or (3.50) maximizes the observability gramian
(3.48) is given by the following theorem.

Theorem 3.4 Maximum of the observability gramian

if γ<
∞

)(sG  then the sequence of L given by
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0=′+′++′ CCRLLAXXA iiii (3.56)

( ) 0;,2,1,0; 0
1

1 ==′+′= −
+ LiXBCDRL ii � (3.57)

generates a monotone increasing sequence of gramians converging to a maximum

XXXX i ≤≤≤≤ �10 (3.58)

To find a bound close to the actual norm of the operator is sufficient to repeat the proce-
dure suggested by the theorem for decreasing values of γ , until the sequence stop to
converge. In fact, if the value of γ is below to the operator norm, doesn’t exist any solu-
tion to (3.48), (3.49), (3.51) preventing the convergence of the sequence.

Note 3.3 Worst input signal

We have stated that the input Lxw =*  bring the difference 
00

2

2

22

2
Xxxwz ′=− ∗∗ γ

to its maximum with respect to any other choice of w . For this reason, Lxw =  is
commonly indicated as the worst input. In reality this is not exactly the signal
which brings the output 

2H norm to equate the product between the operator ∞H
norm and the input 

2H  norm, as in the definition (3.25). In fact, in the case of
figure 3.13 we don’t have a pure input output relationship, but an initial condition

0x  is also present. Only when γ  tends to the norm value (
∞

→ )(sGγ ) the in-
terpretation of worst signal for Lxw =  assumes fully its meaning, as only in that
case the term 

00 Xxx′  becomes negligible for any finite initial condition with re-

spect to the norms 2

2

∗z  and 2

2
 ∗w .

3.2.4 Gramians and stochastic processes

The controllability gramian has an interesting interpretation linked to the power spectra
of a colored stochastic process. In fact, the covariance matrix of the samples of the state
of the signal (3.18) in steady state is given by the controllability gramian Y , the covari-
ance matrix of an output samples TCYC , as a consequence the norm 

Pu  of the signal is

coincident with the norm 2H  of the coloring filter.

3.3 Duality

Coping with state variable representations of dynamic systems we will frequently en-
counter an aspect of the dynamics of linear invariant systems called duality. This prop-
erty was already evidenced by the pairs of matrices of observability and controllability
of a system that by transposition have similar characteristics. The property is synthesized
by the following definition.
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The dual or transpose operator  of a given dynamic system is the one obtained trans-
posing the quadruple of matrix of its representation
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In the dual model outputs and inputs interchange the respective roles, as well as the
observability and controllability gramians. It is immediate to verify that the norms 2H  e

∞H  are preserved by duality.
Because of this property it is unimportant to approach the problem of designing the
control adopting either one or the other of the two representations, obviously, transpos-
ing the control filter, before its use, if the dual model of the process has been adopted for
the design.

3.4 Sample data systems

3.4.1 Gramians and 2H norm

In sampled data systems formulas (3.2) giving the energy of a signals is substituted by

∆′=
∞

o
kykyy )()(2

2
(3.60)

while, the free response of a system is given by

0)( xCAky k= (3.61)

The relationship between output energy and observability gramian is now

∆′′=∆′′′′=
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0000
2

2
xXxxCACAxy

o

kk (3.62)

with observability gramian given by

CCXAAX ′+′= (3.63)

This is the discrete time Lyapunov equation.
The corresponding controllability gramian acquires a very interesting interpretation
when dealing with discrete time stochastic processes, analogously to the continuos case.
Let assume that the input of a dynamic system is represented by an independent se-
quence of random samples with unity variance. Let define the covariance of the state at
step k

( ))()()( ′= kxkxEkY (3.64)

that, expressed as function of the input samples originates the following difference
equation
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BBAkAYkY ′+′=+ )()1( (3.65)

At steady state we obtain the algebraic Lyapunov equation of the controllability gramian

BBAAYY ′+′= (3.66)

dual of the observability gramian seen before.
As a conclusion Y is the stationary covariance matrix of the state of an asymptotically
stable system  driven by an input white noise of unitary variance.

3.4.2 Relationship between continuous and discrete time systems

If we want to apply previous results obtained when sampling a continuous time system,
and compare simulation results with the theoretical ones represented by the output to a
white noise the following consideration are needed.
Let be continuous and discrete time systems given by

)()(),()()1(
)()(),()()(

kCxkykwBkxAkx
tCxtytBwtAxtx
=+=+

=+=� (3.67)

obtained using the techniques described in the previous chapter.
In order to have in the discrete case results comparable to the continuous one it is neces-
sary that between the intensity of the samples of the input white noise there is a rate of
∆ , therefore, assuming the variance of )(tw  one, the variance of the samples in the
discrete case becomes

( ) 2

1)()(
∆

=′ kwkwE (3.68)

The integral of the output signal built from the sum of samples, we have already seen,
introduces a factor of ∆ . In conclusion the following approximation is verified

( ) ( )CYCtrCCYtry ′
∆

≅′= 1
P

(3.69)

3.4.3 The ∞H norm

If the discrete time transfer function of the system is available, remembering the rela-
tionship between pulse transform and Z transform:

sezzGsG ⋅∆==′ )()(ˆ .

The ∞H  norm is the maximum on the unit circle of the maximum singular value of the
discrete time transfer function

( ) ( ))(sup)(ˆsup)(ˆ zGjGsG
jez
σ=ω′σ=′

θ=ω∞
.
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The ∞H norm can also be characterized using an algebraic approach analogous to theo-
rem 3.3, however the notation is a little more involved. So results are simply reported in
the chapter devoted to the synthesis.

3.5 Matrix singular values

The singular values of a matrix A, indicated as ( )Aiσ , are the root square of the eigen-
values of the square form AA′  or AA ′ . Hence AA ′ e  have identical singular values dif-
ferent from zero. Singular values equal zero may differ in number only when the matrix
A is not square. In particular, the maximum singular value, indicated with ( ) ( )AA ′=σσ ,
is related to the maximum modulus of the vector

( )
2

2
21:

2

2
maxmax,,

x

y
yAAxAxyAxy

xxx
==′′==

=
σ (3.70)

representing the induces norm of the matrices AA ′  e  , adopting . 2R  spaces for inputs
and outputs vectors.
Analogously the minimum singular value of a matrix A

( )
21

min yA
x =

=σ (3.71)

The rate between maximum and minimum singular values is called conditioning index
of the matrix .
An useful inequality is the following:

( ) ( ) ( ) ( ) ( )BABABA σ+σ≤+σ≤σ−σ (3.72)

If A is square and invertible

( ) ( ) ( ) ( )A
A

A
A

σ
=σ

σ
=σ −− 1,1 11 (3.73)

Beyond the properties (3.1) of a norm, the maximum singular value of a matrix has the
property

( ) ( ) ( )BABA σ⋅σ≤⋅σ . (3.74)

For square, symmetric, definite or semi-definite matrices eigenvalues and singular val-
ues are coincident. More generally singular values must not be confuse with eigenvalues.
A relationship between the two is given by the following inequalities:

( ) ( ) ( )AAA i σ≤λ≤σ . (3.75)

One last result relates singular values and trace of the square form of a square matrix

( ) [ ] =′=
ji

ij
i

aAAtrA
,

22σ . (3.76)
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The trace of a matrix is the sum of all its diagonal elements. In the case of the trace of
the square form it means the sum of the square of all elements of the matrix.

3.5.1 Structured matrices

When a matrix is structured in two blocks the following inequality is verified:

( ) ( ){ } ( ) ( ){ }BA
B
A

BA σσ≤
�

�
�
�

� �
�
�

�
σ≤σσ ,max2,max (3.77)

but also

( ) ( )BA
B
A 222 σσσ +≤

�
�
�
�

� �
�
�

� . (3.78)

In the case of the matrix is structured in four block is verified

( )
( )

( )
( )

�

�
�

�

� �
�
�

�

σ
σ

σ
σ

σ≤
	
	




�

�
�

�

�
�
�

�
�

�
σ

22

12

21

11

22

12

21

11

A
A

A
A

A
A

A
A

. (3.79)

Obviously, any restriction of a given matrix has maximum singular value smaller or
equal to the maximum singular value of the entire matrix, e.g.

( ) �

�
�

�

� �
�
�

�
≤

22

12

21

11

A
A

A
A

Aij σσ . (3.80)

3.6 Problems

3.1 Given a dynamic filter

�

�
�
�
�

�

�

−−
−−

10
79.0

103.79.1
01.010

. (3.81)

verify the values of its norms 2H  and ∞H .  Hence, apply a unitary white noise and
explain why the norm P of the output cannot be bounded by the norm ∞H  of the op-
erator, considering that the input is a white noise with unitary variance.
Answer: observe the table (3.26), and note that for a white noise input the norm P is not
defined.  Viceversa, the S of the output is exactly the ∞H  norm of the operator.
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