


Chapter 1
THE PROCESS, THE MODEL, THE CONTROL

This chapter reviews the formalisms to model dynamic systems and introduces the
problem of automatic control. As the control is designed and its performances a priory
evaluated based on a model, the unavoidable approximations between model and proc-
ess, usually called uncertainties, are discussed.
This book consider the design of the control based on linear, time invariant, finite di-
mensional models, i.e. models represented in the time domain by a finite order system of
ordinary differential equations, the state variable representation, or in the frequency
domain by rational transfer functions. As we will consider jointly continuous as well as
sampled data systems, informal techniques will be given already from the beginning to
relate approximately the two visions of the system, leaving to a specific chapter to for-
malize the problem of sampling.

1.1 The model of a dynamic system

Let us consider the problem to regulate1 the temperature inside a closed environment by
using an electrical heater. The model is constituted by the volume of air of the environ-
ment, characterized by a thermal capacity, the environment is limited by peripheral walls
with a certain degree of thermal conductivity, as represented in figure 1.1.

                                                          
1 It means to maintain a physical variable of the system to a constant selected value using the control
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Fig. 1.1 A thermal dynamic system

The equations giving the evolution in time of the air temperature, and the quantity of
heat exchanged through the walls are:
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From them the corresponding state variable representation is:

)()(

)(1)(1)(1)(

txty

td
RC

tu
C

tx
RC

tx
paapa

=

++−=�

(1.1)

where:
yta =  is the air temperature, state and output of the system,
uqu =  is the quantity of heat dissipated by the heater representing the control,

dte = is the temperature of the external environment that may change in unpredictable
manner considered as a disturbance.
The system representation is in no way unique. A more realistic model of the previous
process assumes that the walls, as well, have a thermal capacity and the exchange of heat
is through the two internal and external wall surfaces.
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Fig. 1.2 Thermal dynamic system - 2

The equations, with this new assumption, become:
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A second state representation, more accurate than the (1.1), is given by:
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with state variables:
atx =1  the air temperature and ptx =2  the temperature inside the walls.

This process of growing complexity may be carried on further. Sometime a better ap-
proximation is really necessary to improve the performances. In many cases, however,
the well know parsimony of engineering asks for simplified models where the approxi-
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mation resulting is in some way taken into account in the design, how better explained
next.
If we want to consider that the heat transferred to the environment air is obtained by the
current flowing through a thermal resistor the control variable is properly the voltage

)(tvu  applied to the resistor, with a dissipated power given by:

)(1)( 2 tv
R

tq uu = (1.3)

where R is the value of the resistor of the heater.
The system input is now )(tvu , instead of directly )(tqu , and the model becomes non-
linear.
Techniques to design non-linear control are available. However, in most cases a linear
control will fit the needs, as when the thermal system will maintain approximately a
constant temperature, and the variables will experiment small variations in the neighbors
of nominal values. In these cases equation (1.3) can be approximated by linearizing it
around the nominal values and substituted by
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where the control input is )(t
uv∆ .

This techniques to move from a non-linear model to a linear one is called linearization.
Finally, the parameters present in the model, eipa RRCC ,,, , assume values approxi-
mately known or varying in time.
Previous observation put in evidence that doesn’t exist the model of a given system, but,
instead, several models, with different degree of approximation and complexity, with
different values of their parameters can be used interchangeably to represent a given
reality.

1.2 Block diagrams

Dealing with linear models, eventually obtained by linearized approximations of non-
linear systems of finite dimension, it is customary to represent graphically the equations
of the model using block diagrams, where blocks represent input-output functional
operators, and the arcs connecting blocks represent signals2 that, applied to the input of
one block, are transformed into output signals. In the past these block diagrams where
commonly used to represent operators and signals in the transform domain (frequency).
In this realm input-output dynamic relationships are simply algebraic ones so it is possi-
ble to carry on the block diagram an algebraic computation to determine the equivalent
transfer function of complex graphs of interconnected blocks. This technique is known
as block diagram algebra. A recent re-edition of a classical text based on this approach

                                                          
2 A signal is simply a function of time
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is [1], (see also [2]). A paragraph at the end of this chapter offers the essential elements,
very simple and almost intuitive to perform block diagram algebra.
An example of application of block diagram algebra is given in the following of this
section.
The block diagram of the first model of the thermal system with equations (1.1) can be
represented as:
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Fig. 1.3 Block diagram

Where 
s
1

is the Laplace transform of an integrator in time.

With a proper transformation it becomes:

pa RC
1

pa RC
s 1

1

+
aC

1)(sU

)(sD

)()(1 sYsX ≡

+

+

Fig. 1.4 Block diagram after a transformation

The second model of the process with equation (1.2) is represented by the next diagram:
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Fig. 1.5 More complex model of the thermal system

With a first transformation it becomes:
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 Fig. 1.6 Processing the model

And with a second transformation it assumes the final form:
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Fig. 1.7 Final block diagram of the thermal system

1.3 Discrete time dynamic systems

Today almost all dynamic systems are controlled digitally by computers, input and out-
put signals  of the process, usually a continuous system, can be processed by the con-
troller only at discrete intervals of time, we call this a sampled data control system. A
deeper treatment of sampled data control systems and of the relationship between con-
tinuous process and digital control is delayed until chapter 2. Here we offer an intro-
ductory development where discrete time systems are seen as an alternative reality
which emulates approximately the behavior of the continuous systems they represent.

1.3.1 Approximating the derivative in time

Let us consider the simpler of the two thermal control systems of the previous sections,
instead of continuous time signals, we assume to take periodically samples from them
and we substitute empirically in the block diagrams to the operators of integration in
time the operators of sum of samples. This approximation can be reasonable if the sam-
pling period, the interval of time between to consecutive samples, is small. Called ∆  the
sampling period, a discrete time model approximating the continuous process is given
by the next block diagram:
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Fig. 1.8 Approximating the integrator in a sampled data system

Where the arcs represent the samples of the signals and Σ  the sum operator of the input
samples multiplied by ∆  up to the current time.
Let note that this model is obtained by substituting the derivative present in the equa-
tions of the process with their first order finite difference approximation.
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It results in the following difference equation
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A similar model for the more complex system is the following:
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Let note that with this approximation all block diagrams in the continuous case remain
formally unchanged, with the only substitution of the operator of sum of samples with
the operator of integral in time.
It is easy to compare the eigenvalues of the coefficient matrices, the zeroes and poles of
the transfer functions of the system in the two cases. In fact, as we will see at the end of
this chapter the substitution of the integral operator involves the transformation

∆
−⇔ 1zs , in turn this introduces the following relationship between roots in the con-

tinuous and discrete cases: ii λ⇔λ⋅∆+1
These results are the consequence of the approximation of the derivative, and can be in
certain cases unsatisfactory. Let compare these results with the precise treatment of the
problem given in chapter 2.
We suggest to verify continuous and discrete time models of the previous examples with
the following values of the parameters
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1.4 Block diagram and state variable representations

Block diagram algebra was meaningful when the analysis of a dynamic system was car-
ried on with paper and pencil. The availability of software environments on computer
makes it obsolete today. Block diagram continue, however, to be irreplaceable tools of
representation with the objective to deliver automatically the equivalent state variable
representation of complex systems resulting from the interconnection of smaller compo-
nents. An example is represented by the developing environment G++ which supports
this book.
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Fig. 1.9 Block diagram of the thermal system with a graphical editor G++

Exactly the same diagram offers in approximate fashion the sampled data model ob-
tained by substituting the integrator operator

Fig. 1.10 Block diagram of the sampled data model of the thermal system
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1.5 Relationship between process and model

The physical process is never perfectly known. Even if it were, there are aspects of its
dynamics that are useless for designing the control, moreover signals enter on the proc-
ess, outside our control and often unknown, which influence dynamics and outputs. A
model that simplifies the behavior of the process is needed to design a control. This
must, however, maintains some information on disturbances and approximations, as well
as limiting bound must be assessed, how is a standard practice in engineering. Then, the
relationship between process and model and the selected design approach must guaran-
tee that performances achieved on the model will be maintained (guaranteed) when the
control will be transferred to the real process. For this, we propose two alternative point
of view to represent uncertainties on the process, that we will indicate conventionally as
transparent box model  and black box model.

1.5.1 Transparent box model

In the first representation we assume to know, if not the values, at least the internal
structure of the process, and hence the origin of the uncertainty responsible for the dif-
ferences that, with identical input, we will experience on the outputs, respectively, of the
process and of the model. Classically the sources of uncertainty are distinguished be-
tween parametric disturbances  (i.e. not precisely known parameter values, values
changing in time in an unknown manner, linearizations or ignored whole dynamic com-
ponents), and additive disturbances  (signals adding to the control as input of the system
dynamics outside the reach of the controller and the designer).
Based on the a priori knowledge of the system the differences experienced between
system and model outputs with same control are explained by the ignorance of such a
disturbances. Process and model are, therefore, put in relationship each other as repre-
sented in the following picture:
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Fig. 1.11 Transparent box representation

Because of the linearity of the adopted model (the process may be non-linear) uncer-
tainties can be translated, as in the figure, at the end of the model. The nominal model in
a state variable representation is given by the following matrix equation:
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A direct link between inputs and outputs will be always absent in representing a physical
process, the model is said strictly proper. The  error signal  between system and model
taking into account all sources of uncertainties, approximations and external distur-
bances is consequently defined as:

)()()( tetyty mm =− .

This signal is made explicit, at least approximately, in a few case of interest in the last
part of this section.

Model uncertainty and external disturbances in the dynamics of a process

Parametric uncertainty means that system and model will not have the same dynamics.
Added to this external disturbances are present on the input of the dynamics or on the
output. If we indicate with GGp , , respectively, process and model operators, and with

m∆  the difference dynamics operator  describing approximations and uncertainties we
obtain the following relationships
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Fig. 1.12 Model errors and disturbances on the process

with

wGwGw dp ′′+′= .

Without external disturbances we have simply ue mm ⋅∆= .
If we want to indicate additive disturbances, referring them to the output without any
specific requirements, we will say wem = , if disturbances are applied to the input of the
process wGe pm ′⋅= , or if we want to show that the output disturbances have their own
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dynamics wGe dm ′′⋅= . In general if we assume both additive and multiplicative distur-
bances we have

wue mm +⋅∆= (1.5)

Extended system

For control design, along with the description of the input-output model of the process,
encompassing external disturbances and uncertainties it is necessary to introduce a cer-
tain number of requirements that the control must satisfy. Typical examples of require-
ments are: reducing or zeroing effects of external disturbances on the controlled output,
maintaining the tracking error of the output with respect to a reference signal3 between
acceptable bounds, guarantee that the stability imposed by the control to the nominal
model by the design is satisfied for any discrepancy between process and model in the
specified region of uncertainty.
In the first case one says that performances are satisfied, in the second that robust sta-
bility is guaranteed by the control.
In classical control theory all previous specification were represented, as it will be
shortly seen, by the closed loop sensitivity function with its ability to show how effects
of disturbances where reduced in the closed loop system. Hence, an elegant way to state
a control problem is to reformulate requirements by introducing proper system signals
and setting for them limits of the desired sensitivity with respect disturbances in closed
loop. This will allow to integrate in a unique representation nominal model, uncertainty
and disturbance description and performances desired by the control. This point of view
is formalized introducing a dynamical model with four port constituted by two groups of
inputs, and two groups of outputs, indicated in the literature as extended system of the
control problem. The first group of inputs w represents external disturbances, or in gen-
eral disturbances due to the uncertainty present on the process, the second group u are
the controls; the first group of outputs z, indicated as objectives, indicate signals carry-
ing requirements to be satisfied by the control, the second group of outputs y are, in-
stead, measurements available for the control. These are the outputs of the process used
for feedback or external disturbances that may be eventually measured, such as the ex-
ternal temperature in a thermal control system.

u
z

)(sGw
y

Fig. 1.13 Extended system

                                                          
3 The reference signal represent the profile that we want the controlled output variable follows in time
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If we assume to apply a control, based on the measurements, to 1.13, achievement of
requirements is evaluated through the sensitivity function that establish itself in closed
loop between w e z.
In state variable form the extended system is conventionally represented by the follow-
ing quadruple of matrices

�

�
�
�

�

�

⋅=
�
�
�
�

�
�
�

�

�

u
w
x

DC
DDC
BBA

y
z
x

0212

12111

21�

(1.6)

This quadruple will be alternatively used, with respect to the transfer functions, to repre-
sent input-output dynamic operators with a short hand notation of the type:
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In this representation we assume that the coefficient matrix A  will be completely con-
trollable from the pair [ ]21 BB  and observable from the pair �

�
�

�

2

1

C
C , but not necessarily

from the only control input matrix 2B  and measurement output matrix 2C . We note that
in (1.6) the subspace of A completely controllable/observable from 2B  e 2C  represents
the nominal model of the process. Moreover, in (1.7), as the process is always strictly
proper 022 =D .
Some example of extended systems will be introduced at the end of this chapter.

1.5.2 Black box model

An alternative schema, more abstract than the previous one, to relate the process with its
uncertainty and a model is obtained by ignoring the real internal structure of the process
and the disturbances w, adopting, instead, to represent discrepancies between process
and model the information a posteriori resulting from the differences between output
measurements of process and model with identical control. This scheme can be obtained
by implementing an asymptotic state observer  from the measurable output of the proc-
ess. Differences, approximations effects of unknown external disturbances are here
represented by the measurement reconstruction error (fig. 1.14).
To understand the result, let us introduce a state observer of a system of which we as-
sume to know the internal structure (1.6), and estimate the outputs z e y
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We indicate with zzeyye zy ˆˆ,ˆˆ −=−=  e xxex ˆˆ −=  reconstruction errors of the different
signals of interest. The error model results from the difference between (1.6) e (1.8) and
it is given by
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From (1.9) it is clear that for all values of the observer matrix K that guarantee 2KCA −
asymptotically stable, any bounded disturbance w in input originates error signals in
output bounded, as well. The reconstruction error operator satisfies the property of
(bounded input-bounded output) BIBO. Naturally, we will not be satisfied by simply
BIBO observers, but we will look for specific solutions guaranteeing also small sensi-
tivity of the objective errors zê  to disturbances. Moreover, we note that this error is
independent from the control input.
In these conditions it is reasonable to imagine that the extended system (1.8), where the
output reconstruction error yê  plays the role of unknown disturbances, ẑ  are the objec-
tives and x̂  the available measurements (in fact from the observer the estimated states
are available) can be adopted as representation of the original process comprehensive of
its uncertainties, instead of (1.6). Then the control of (1.8) can be done by simply state
feedback.
However (1.8) will be of any utility, if it is really representative of (1.6). This means that
performances (and stability) of a state feedback control designed and verified over (1.8),
must be effectively maintained or guaranteed when this control, through its matched
state observer, will be transferred to (1.6) and in turn to the real process.
Moreover, if the previous condition are satisfied and the model is representative of the
reality the whole schema assumes an interesting interpretation of model reference, which
is actually one of the approaches proposed in the literature for closed loop control:

•  The model (1.8) with its control becomes the desired closed loop reference
model, indicating how we want the objectives (the estimated objectives as the
real ones cannot be measured) to behave in closed loop.

•  However in turn, the performances guaranteed by the estimation errors assure
that the real objective will stay necessarily close to their estimates, allowing esti-
mator and state feedback, jointly, to achieve the desired goal in controlling the
process.

We will see in the next chapters that a model similar to (1.8) actually exists, if the con-
trol has a solution. For that, certain conditions in building the estimator and designing
state feedback must be fulfilled. The interesting aspect is, however, that even if the
needed conditions are not exactly satisfied, the proposed scheme shows in practice to be
fairly robust in guaranteeing the real performances and it will be at the basis of the ap-
proach proposed in this book and implemented in G++ for designing controls.
Transparent box, and black box models are put in relationship in figure 1.14:
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Fig. 1.14 Relationship between black box model and process – feedback control

We have seen that linking the two model representations is critically related to the as-
ymptotic stability of matrix 2KCA − . In general the pair ( )2,CA  is not completely ob-
servable, then we will require detectability, so the extended system must be detectable
from 2C .
Dually, a state feedback of (1.8) that guarantees stability depends on the controllability
pair ( )2, BA . In general this pair is not completely controllable, so we will require stabi-
lizability, and that the extended system is stabilisable from 2B .

1.6 The control problem

The control problem can be stated very preliminary as the selection of a control signal u
to apply to the process to maintain (regulate) some output signals of the process to a set
point, or force them to follow (tracking) reference signals, in spite of the disturbances or
uncertainties present on the plant.
If some of the external disturbances can be measured we can control the system through
direct disturbance compensation. This situation alone is rarely useful, and the achieved
control results of poor quality.
One examples is given by low cost home temperature controls exploiting the measure-
ments of the external temperature.
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Fig. 1.15 The control problem – direct disturbance compensation

Selected properly the controller parameters, the output of the system, in this case the
internal environment temperature, can be theoretically insensitive to disturbances. This
kind of control has, however, several drawbacks:

• measurements are in turn affected by noise influencing the control;
• compensation is critically based on the knowledge of the system parameters (in

this case pR ). If these parameters change without notice compensation loses its
effectiveness;

• such compensation can operate in steady state of slowing varying disturbances.

A much better result is achieved with a feedback control. In this case system outputs are
measured, the measure is compared with the reference, and when an error is detected the
error signal is applied to the controller that generates a control input to correct the out-
put.
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Fig. 1.16 Feedback control
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Then it may be useful to integrate feedback with direct compensation to improve per-
formances.
Feedback is a much powerful control tool with respect to direct disturbance compensa-
tion to guarantee insensitivity to uncertainties, to achieve precision in steady state and to
impose desired dynamics during the transitions.
The design of the control is based on two interlacing aspects:

• the characteristics of the feedback loop 4 with effects on disturbances and uncer-
tainties;

• the dynamics behavior of the reference-output channel in closed loop with effects
on the ability of the controlled system to track reference signals.

1.7 An example of multivariable control

In a control system are present in general more than one control variable and output
measure. Let consider a thermal control system where the heater is represented by ra-
diators with hot water warmed up by a central thermal station. The main variables are:

)(tqb  the quantity of heat transferred by the burner in the thermal station to the water in
the boiler

)(ttb  the water temperature at the boiler
)(, tqR rr  the thermal resistance and the quantity of heat transferred by the radiator

)(tqby  the quantity of heat that, through a by-pass at the radiator, returns to the boiler

)(),( tqtq da  the quantities of heat transferred to the controlled environment and lost in
the circuit.

                                                          
4 The feedback loop is the function established between input and feedback return signal when the feedback
loop is opened.
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Fig. 1.17 Thermal system with a central boiler and hot water radiators
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with state variables ba txtx == 21 , .
Factorized in diagonal form the coefficient matrix of the model becomes:
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Matrices of the discrete time model, obtained with the approximation previously de-
scribed are:

�

�
�
�

�
=�

�
�
�

�−
=

�
�
�

�
�
�

�
= −

−−

1

23

100
010,

1.01.0
1

,
9999.00

1099.0
dBBA



20 Automatic control

and the transfer functions:
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With the results of the next chapter we will be able to verify that the exact sampled data
model with the present choice of sampling period will not be much different.
Let us approach a first one input-one output closed loop control by regulating the envi-
ronment temperature acting on the quantity of heat given by the burner at the boiler.
As an example we will use the following controller to stabilize the closed loop system:

1.0
)9.0(2600)(

)(2600ˆ
)(2080ˆ1.0ˆ 1

−
−=

−+=
−−=+

z
zzG

trxu
trxx

c

iaiii
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• Check the poles of the closed loop system
• Indicate how we can design a different controller by assigning the closed loop

poles
• Try to adopt the theory of separation by building a state observer and state feed-

back on the observed states
• Simulate the response of the environment temperature and water temperature at

the boiler to a step of the set point
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Fig. 1.18 Environment temperature to a step of the set point
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Fig. 1.19 Water temperature to a step of the set point

In the previous figures we can see that a limitation of previous control is the long re-
sponse time and the unacceptable high value reached by the water temperature.
A far better result is obtained with a multivariable control, acting on both control inputs

)(tqby  and )(tqb , and exploiting the measures of both states )()( tttt ab .
Let try to control the burner with a feedback from the water temperature and the by-pass
with a feedback from the environment temperature. The proposed gains are:

5,5.0 21 =−= kk
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Fig. 1.20 Environment temperature to a step of the set point
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Fig. 1.21 Water temperature to a step of the set point

The problems of the previous control are completely disappeared.

1.8 Block diagram algebra

Block diagram algebra is a graphical manipulation that applies to linear and time invari-
ant systems, both continuous or discrete time.
The elements of the representation are three:
The application of a signal to a algebraic or dynamic operator

Op
u uOpx ∗=

Fig. 1.22 Linear dynamic operator

Node of summation:
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Fig. 1.23 Node of summation

Point where a signal is taken:

x

x

x

Fig. 1.24 Point where a signal is taken, e.g. a measure

1.8.1 Continuos time

When a block diagram represents a continuos time system its signals are continuous
functions of time. The application of a signal to a dynamic operator is implemented by
the convolution integral.
In particular, two representative operators in this realm are the integrator

ττ=
t

dutx
0

)()(

and the pure delay T:

)()( Ttutx −=

Instead of the time domain we can represent the system in the Laplace transform do-
main. Arcs of the block diagram brings the transform of the signals and the operators
their transfer function. Application of a signal to a dynamic operator maintains the inter-
pretation of algebraic product between operator transfer function and operator trans-
form.
In particular, operator of integration and operator of delay are, respectively:

)()(,)(1)( sUesXsU
s

sX sT−==
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Fig. 1.25 Integrator in time and in the transform domain

( )Tt −⋅
)(sx)(tu )()( Ttutx −=

sTe−
)(sU

≡

Fig. 1.26 Delay operator in time and transform domain

1.8.2 Discrete time

In the discrete time case signals are sequences of samples, the product of convolution
becomes the summation of convolution, and the elemental operators are summation of
the samples Σ (multiplied by the sampling period ∆ to maintain approximately equality
between the energies of the signals in the two cases: represented in one case by the
summation of the square of the samples and in the other by the integral of the square of
the signal. If we introduce the operator of one sample delay q-1 summation can be ex-
pressed as:

uqxkukx
uxkukxkx

1)1()(
*)()()1(

−=⇔−=
Σ=⇔⋅∆+=+

_
1−q∆ +

)(ku )(ku )(kx)(kx )1( +kx

Fig. 1.27 Summation, corresponding to integration, in the domain of sampled data sig-
nals
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As for continuous signals, sequences of samples have a symbolic representation, corre-
sponding to Laplace transform, called Z transform, where the complex variable 1−z  is
the transform of the unitary delay.

1−
∆

z

)(ku )(zU)(kx )(zX

1−z1−q
)(zU)(kx )(zX)(ku

≡

≡

Fig. 1.28 Summation and delay in the domain of samples and of the transformation

In particular, the samples of a signal delayed of T, where T = ∆m are given by:

)()( zUzzXuqx mm −− =⇔=

Solution of a block diagram, through the block diagram algebra, in its representation in
the transform domain bring to the representation of a dynamic operator in the form of its
transfer function.

1.8.3 Linearizing a non-linear system

Often the behavior of some block of the process is non-linear, see the relationship be-
tween the voltage at the resistor and quantity of heat dissipated in the environment of
equation (1.3) . Linear system theory can be exploited to model systems through lineari-
zation, accounting for differences between process and linearized model to parametric
or additive disturbances .
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Fig. 1.29 Linearization of a non-linear gain characteristics

Let consider a static non-linear characteristics present inside a process, e.g. the amplifier
at the input of a system. Let assume the maximum range of the input signal and inside
this range consider the linear characteristic that approximate the non-linear one: in fig-
ure 1.29 the line with angular coefficient k. If we image that the input signal can assume
a nominal value, taken inside the admissible range, and for each nominal values have
small variations in its neighbor, the system will show for these perturbations a gain given
by the tangent to the non-linear characteristic. The angular coefficient of this tangent
will change inside the range. The difference between the tangent and the non-linear
characteristic can be accounted for parameter variations in the process, and half of the
difference between maximum and minimum values, normalized to the average, can be
assumed as a index of non-linearity of the characteristic. Linear characteristics have
index equal to zero with the index growing greater is the discrepancy with respect to
linearity.
The index of non-linearity can, then, be formalized as:
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