


Chapter 9
CONTROL OF A HYDRAULIC MOTOR

This chapter is devoted to the development of one classical example. We continue here
to maintain a connection with classical approaches, with the objective to conduct a com-
parison between classical and modern design techniques.
The example is taken from the control of hydraulic joints of an industrial robot. The
peculiarity of the problem is, precisely, given by the characteristics of the hydraulic
motor.

9.1 Modeling a hydraulic motor

The basis of a hydraulic motor is a cylinder moved by oil maintained at high pressure
through a compressor and controlled by a valve.
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Fig. 9.1 Hydraulic motor

The equation of the dynamic behavior of the system are the following:
Valve and its linearization
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The range of variation of the variables present in the model are
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Fig. 9.2 Block diagram of the non-linear system

After linearization the model becomes

β+⋅ sm
1q

x�
i + _

ik~ A
R

sC 1
1

+⋅

A

P

pk
~

+
_

Fig. 9.3 Block diagram of the linearized model

As an exercise, in the following we will develop two different interpretations of the non-
linearity in terms of uncertainty. The first interpretation is more schematic but allow to
be approached with classical SISO techniques. The second more accurate can be han-
dled with MIMO approaches, only.

9.1.1 Uncertainty description using transfer functions

The transfer function of the linearized model resulting from figure 9.3 is
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The two parameters are assumed to change independently, introducing in the model two
sources of uncertainty:
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We remember that in this situation the condition of robust stability requires

ω∀<ω⋅+ω⋅ ,1)()( 12221 jGWjSW eq . (9.4)

9.1.2 Uncertainty described in the state variable domain

A more realistic description of the uncertainty introduced by non-linearity requires the
adoption of a state variable representation in a multivariable context.
Let consider, again, the two linearization parameters, introducing two new variables
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At the variation of 
nn iP  and  the parameters assume the following form
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with numerical values 1104.1,49.0,089.0 2
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The block diagram of the extended system encompassing uncertainty and some loop
specifications is presented in the following figure
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Fig. 9.4 Extended system of the control problem of a hydraulic motor

9.2 Requirements

The requirements for the position control of a joint controlled by the hydraulic motor are
the following:
reference-output relationship

•  1) rise time to a step 3.0≤st ;
•  2) maximum overshoot 2.0ˆ ≤s ;
•  3) tracking error to a ramp 0=∞e .

Closed loop sensitivity
Let the relative sensitivity of the closed loop transfer function to the variations 2∆ be:
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∆

eq

eq

G
G

.

Sensitivity to additive disturbances
The input amplifier is subject to input offsets, at steady state the effect on the controlled
output must be zero.

Control activity
Transducers for measuring position and velocity are available. They are characterized by
independent white noise with standard deviation 62 10−=σ .
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The control activity, generated by these noises, measured by the norm 
Su  of the power

spectrum must be limited:
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This requirement translates in the following condition

1.0;,1)( 33 =∀<⋅ WjGW equ ωω . (9.8)

that can be also written as

G
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9.3 Loop shaping in the frequency

We note preliminarily that requirements of sensitivity of the closed loop function require
a two degree of freedom design. We consider the loop characteristics, first, then we
satisfy reference-output requirements.
By necessity with this approach we are constrained to adopt the first form of representa-
tion of the uncertainty.

9.3.1 Closing the loop

Performances

The plant has already a pole in zero, requirement 3) of error zero to the ramp in one
degree of freedom design would require to add a further pole in zero in the loop. With a
two degree of freedom design previous requirement can be achieved exploiting the sec-
ond degree of freedom, acting on the feedforward filter without increasing the weight of
the loop dynamics.
However, a constant noise on the input is present. The need to guarantee zero output
error in steady state, and not the previous requirement on reference tracking, asks for
one more pole in zero in the loop.
The closed loop reference-output frequency band because of requirement 1) on the ris-

ing time is 
s

rad
B 10≈ω . At that frequency requirement 4) imposes the following con-

straint on the loop sensitivity:

10,9.4)(10)( 221 ==⋅= ωωω jWjW .

 From the two previous conditions we assume the following output weighting function



Control of a hydraulic motor 261

)40028(
400490)( 221 +⋅+

⋅=
sss

sW . (9.10)

The second pair of poles in the function is justified by the fact that at frequencies greater
than the band we are not interested to impose further constraints to the sensitivity,
sending the gain of the weight fast to zero.
Let start the design to satisfy performance requirements.
Compensator – low frequencies
At the low frequencies we assign to our compensator the following function

s
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Compensator – middle frequencies
We add to the compensator a lead action to guarantee the needed stability margins
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We can verify that with this compensator the system is stable in nominal conditions and
satisfy sensitivity requirements
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Fig. 9.5 Performance index

Robust stability

We check, now, robust stability conditions represented by (9.4).
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Robust stability is not guaranteed. Responsible for this is a poor phase margin. We sub-
stitute the original lead action with a stronger one.
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Fig. 9.7 Principal closed loop characteristics

The achieved result guarantees robust stability and nominal performances, robust per-
formances, viceversa, are not satisfied. Nevertheless, all basic elements are now evi-
denced, so that with trial and errors, the design can be improved, e.g. adding a second
lead action. Finally observe the index of control activity. This requirement is not satis-
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fied. In fact, it was not considered in this design. It is doubt, without introducing other
measurements, beyond the output, if it is possible to reduce the control activity. We will
see if the synthesis will be able to improve the results.

9.3.2 Reference-output relationship

Requirements 1), 2) e 3) define the desired closed loop transfer function, of the type
proposed in (6.6)

0.59)49)(s + s 8.4 +(s
0.535)53.9(s

21 +
+=eqdesG .

To guarantee steady state tracking we have an unacceptable rise time.
An alternative function is the following

16) + s 4.8 +3.5(s
)5.316(s
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+=eqdesG . (9.11)
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Fig. 9.8 Step response for two different transfer functions

The process follows the classical path of a two degree of freedom design.
A possible feedforward filter with the previous loop compensation and a desired closed
loop function (9.11) is the following

16) + 4.8s + (s 20)+(s
780.5) + 28.12s + (s 3.5)+(s 0.11715
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2

=fG . (9.12)
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9.4 Synthesis in state variable

We apply state variable synthesis adopting both uncertainty models presented in the
previous sections.
The first example replicates exactly the classical design, the second one with the new
uncertainty model has more restrictive conditions, so it will be not directly comparable
with the classical design.

9.4.1 Model 1

Interpretation in state variable form of the model (9.2) and requirements (9.10) carries to
the following extended system

Fig. 9.9 Extended system of the control of an hydraulic motor – case 1

The weighting function (9.10) on the sensitivity has been split in two functions
1112  e WW . Function 11W , in particular, has two poles in zero, for this the extended system

is not stabilisable. Situation that requires some caution during the design.
The ∞H  norm of the closed loop operator reach the value of 1.5, technically we are not
achieved robust performances. Robust stability and nominal performances, are
viceversa, satisfied. To achieve this result constraints on the control activity have been
relaxed and as before control activity exits from the requirements.
The next graph shows the achieved results.
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The compensation filter is the following

2.009e004) + 114.1s + (s 1.011e004) + 68.5s + (s 379.6) + 26.71s + (s 231.2)+(s s
 1.02e004) + 54.1s + (s 9895) + 60.85s + (s 424.5) + 27.92s + (s 10.35)+(s 22150.1323
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It is interesting to compare it with the one obtained in the classical design: the pole in
zero is present, as well as the lead action. Three pairs of  complex conjugate poles have
been added: tow pairs can probably be simplified with corresponding zeroes, but the
third one has the clear structure of a notch filter to reduce the gain of the loop at the high
frequencies.

9.4.2 Model 2

We adopt now the second of the two proposed models, and we add to the uncertainty
represented in figure 9.4 requirements on the sensitivity. We found convenient to en-
force these requirements introducing an input noise and assigning the weights on the
output. The complete representation is given in the next figure
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Fig. 9.11 Extended system of the hydraulic motor and its loop requirements

Structured analysis allow to avoid to integrate different requirements in a unique distur-
bance-objective pair. Viceversa each specification is assigned to one input-output pair.
In the function 11W , as its objective is contrasted by the input noise,  only one pole in
zero necessary (the plant has already one pole in zero).
Applying the design process it appear clearly that the uncertainty description is heavier
with respect to the previous case. To obtain robust stability we had to relax further con-
trol constraints. In this case, also, the best result guarantee ∞H  norm of 1.5. Results are
presented in the next figure
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Fig. 9.12 Indices of performance and control activity
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The resulting filter is the following

3.042e004) + 185.4s + (s 399.4) + 27.97s + (s 401.7)+(s s  
8793) + 0.2509s - (s 411.8) + 27.97s + (s 6.675)+(s 66795.2251

22

22

=cG (9.13)

In the next figure the filters built with the synthesis are compared in frequency with the
classical one.
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Fig. 9.14 Compensation filters

The comparison evidences some interesting observations. Both results of synthesis have
the same structure: pole in zero, lead action and notch filter. Note how the synthesis has
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interpreted originally the notch filter, that with poles and zeros slightly separated, one
form the other, contributes to increase the phase margin.
We leave as exercise to verify that to completely satisfy requirements, achieving robust
performance, is sufficient to relax the condition on the sensitivity reducing the required
loop band.

9.4.3 Tachometric feedback

In the previous section, measuring the position only, we were close to satisfy all per-
formance and robustness requirements at a cost on the control activity (approximately
the norm is 10 times greater than the desired value).
Responsible for this is the lead action need to satisfy the necessary stability margins.
To obviate to this situation it is customary to add to the position the measure of the ve-
locity. Using this signal for control is called tachometric feedback. More information on
the system state can only be beneficial, especially in reducing the control activity at
equal performances, as it will be evidenced in the next example.
The new extended system is

Fig. 9.15 Extended system of the hydraulic motor with tachometric feedback

With this model robust performances are positively achieved. The control filter is the
following
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It is interesting to see the frequency behavior of the filter if the tachometer feedback is
transferred to the output, i.e.:

sGGG yccyc ⋅+=
�

(9.15)
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Fig. 9.16 Effect of the tachometer feedback on the compensation filter

Frequency behavior of 
equGW ⋅3

 with and without tachometer feedback are compared in

the following figure
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Indices of nominal performance and robust performance are:
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9.4.4 Two degree of freedom design

We approach the two degree of freedom design, adopting the extended model of figure
9.19.
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Fig. 9.19 Extended system for two degree of freedom design

To the diagram of figure 9.15 a further objective weighting the error between the output
and the reference model eqdG  has been added, contrasted by the reference signal. As the
reference is know a measurement noise on the reference is present.
To guarantee precise steady state gain the reference has been weighted by an integrator
(function rW ). As the objective on tracking influence the sensitivity the gain of 12W  as
been reduced with respect to the previous design to achieve the desired loop band. Also
the gains on measurement noise and control have required an adjustment.
The extended system has in the problem two poles in zero uncontrollable.
The desired eqdG  is  (9.16). Achieved results are detailed in the following
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Fig. 9.22 Desired and achieved closed loop transfer functions
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The controller is a dynamical filter of the ninth order with three inputs. Nevertheless, it
is interesting translate this filter in the classical structure of a two degree of freedom
design with one filter in feedforward and one in cascade. The result is in the following
formula

1.65e006) + 1819s + (s s
7359) + 30.64s + (s 16.6)+(s 20066.6 

  ,
 7359) + 30.64s + (s 16) + 4.8s + (s 16.6)+(s 100)+(s 

 1.435e006) + 1695s + (s 3.685)+(s 14.43)+(s 63.21)+(s 0.040532

2

2

22

2

=

=

c

f

G

G (9.17)
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9.5 Digital control design

We select the sampling period taking into account that the extended system has an im-
portant dynamics at 100 rad/s. We assume for that a sampling period of s006.0 .  Gen-
erated the discretized extended system with z.o.h. sampler, we repeat the design proce-
dure without particular differences with respect to the continuous case. The achieved
results, also, matches the one we already have.
The closed loop poles in the continuous case were

0           0            
0;           0            
3.2;-        2.4-         

3.2;         2.4-         
3.1999773;-  2.4000019-   

3.1999773;   2.4000019-   
0;           1.0000001-   

14.282848;-  13.99999-    
14.282848;   13.99999-    

14.282857;-  14-          
14.282857;   14-          

0;           23.747982-   
0;           63.211479-   
0;           99.999932-   

98.626545;-  27.689613-   
98.626545;   27.689613-   
846.6179;-   847.44926-   

846.6179;    847.44926-   

(9.18)

The closed loop poles in the discrete case are
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0           009-3.13e   1           0           1            
0;           009-3.13e   1           0           1            

3.2;-        2.4-        0.986       0.0189-     0.986        
3.2;         2.4-        0.986       0.0189      0.986        
3.2;-        2.4-        0.986       0.0189-     0.986        

3.2;         2.4-        0.986       0.0189      0.986        
0;           0.998-      0.994       0           0.994        

0;           98.6-       0.554       0           0.554        
14.3;-       14-         0.919       0.0787-     0.916        

14.3;        14-         0.919       0.0787      0.916        
0;           19.6-       0.889       0           0.889        

0;           66.6-       0.67        0           0.67         
99.4;-       27.3-       0.849       0.477-      0.703        

99.4;        27.3-       0.849       0.477       0.703        
0;           489-        0.0532      0           0.0532       

0;           25.9-       0.856       0           0.856-       
14.3;-       14-         0.919       0.0787-     0.916        

14.3;        14-         0.919       0.0787      0.916        
 

omega       sigma   modimag  real

(9.19)

The comparison shows that with the exclusion of a pair of poles that in the continuous
case feedback dragged to a high frequency, the significant poles maintain in the two case
corresponding positions.
The poles of the compensation filter in the continuous case are

3.1999776-  2.4-         
3.1999776;   2.4-         

0;           1.00002-     
14.282847;-  13.99999-    

14.282847;   13.99999-    
0;           007-2.0300555e  

0;           100.00022-   
906.8442;-   909.55345-   

906.8442;    909.55345-   

(9.20)

and in the discrete
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3.1999975-  2.4000009-  0.98570318  40.01892432- 0.9855215    
3.1999975;   2.4000009-  0.98570318  40.01892432 0.9855215    
0;           0.99809104- 0.99402935  0           0.99402935   

0;           98.55767-   0.55358165  0           0.55358165   
14.283167;-  14.000277-  0.91942973  70.07869779- 0.9160555    

14.283167;   14.000277-  0.91942973  70.07869779 0.9160555    
0;           0           1           0           1            

0;           641.64502-  0.0212825   0           0.0212825    
0;           20.411939-  0.884731    0           0.884731-    

 
omega       sigma   modimag  real  

(9.21)

9.6 Conclusions

Classical design has shown that only one lead compensation is not sufficient to com-
pletely satisfy specifications in this example of control of an hydraulic motor. The expe-
rience conducted with the synthesis confirms that a greater stability margin is needed
from the loop. This is achieved with an higher order filter, than a simple derivative com-
pensator.
Starting from a simple mixed sensitivity problem that can be solved with classical loop
shaping techniques the examples evolved to a more complex model covering a complete
envelop of specifications. This emphasizes the flexibility of the extended system ap-
proach to cover a wide range of control requirements.


