
Chapter 10
EXAMPLES OF CONTROL

This chapter is devoted to the development of examples of design. These examples at
difference from the previous chapter miss any relationship with the classical approaches,
and mostly cope with multivariable systems.
It is interesting to note that if from the one side familiar elements of the classical ap-
proach such as loop transfer function, sensitivity, etc. are not used directly, from the
other the construction of the extended system with its weighting functions continues to
represent a unifying point between the two approaches.
The first examples are a reformulation of the exercises of the course of Automatic Con-
trol of the colleague Prof. Giovanni Marro of the university of Bologna.  The remaining
have been suggested by the colleague Prof. Francesco Donati of Politecnico di Torino.

10.1 Control of the inverted pendulum

Fig. 10.1 Inverted pendulum

Equations of the model are
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ϑϑ �� ==== 4321 ,,, xxsxsx

The dynamical behavior of the system is linearized in the neighbor of the value 0=ϑ ,
so sinus is substituted with its argument and cosine with one.
Non-linearity is considered as multiplicative uncertainty where we assume the following
range 025.02 ≤ϑ� . The linearized equations are
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The next figure shows the block diagram of the extended system. In the model the dis-
turbance w has been added to the control, the non-linearity has been represented with the
disturbance-objective pair 11 zw − , and a performance on the regulation error of  s  and
ϑ  due to w through the mask 1W :
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The available measures are  s  and ϑ .
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Fig. 10.2 Block diagram of the regulator of the inverted pendulum

The system is stabilisable and is detectable only measuring s. Nevertheless, perform-
ances are very poor if only one measure is used for the control.
The closed loop operator 11 zw − , with a ∞H  norm below –30 dB, shows that the sys-
tem is strongly insensitive to non-linearity.
Let note that the property of reference tracking from s imposed by the weight 1W  in one
degree of freedom design is accompanied by an unacceptable variation of the angle ϑ
during the transients. For this, the previous scheme is transformed in a two degree of
freedom design with the objective to track a reference of position of the chart.  The new
extended system is the following
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Fig. 10.3 Two degree of freedom design of the inverted pendulum

The new weighting function 1W  is now:
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The presence of a pole at the origin has the scope to guarantee a precise steady state of
the closed loop function.

10.1.1 The equations of the dynamics

Dynamics equations of the inverted pendulum are derived as follows:
Co-ordinate of the center of weights of the pendulum

ϑϑ cos, LLsins + .

Forces transferred from the pendulum to the joint
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Equation of the dynamics of the chart
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10.2 Control of the Segway

Segway is an innovative personal transportation system for one passenger in equilibrium
on a two wheeled chart. Motion is guaranteed by two electrical motors, one for each
wheel, and equilibrium is maintained by the control system described in this section.
This example, as the previous one, is characterizes by an inverse pendulum that can
move longitudinally. In this case the joint of the pendulum coincides with the motor
axis, and it transfers to the pendulum the motor torque.

Fig. 10.4 Segway

The model equations, transferring the wheel inertia directly in the chart mass, are
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where huCm =  is the torque given by the motors and r is the ray of the wheels.
Let select the following state variables

ϑϑ �� ==== 4321 ,,, xxsxsx

We approximate the behavior of the system for small variations in the neighbor of the
value 0=ϑ , then we linearize sinus and cosine.  The nonlinearity is treated as uncer-
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tainty where we assume that 36.02 ≤ϑ� . We consider that the chart will subject to vari-
able loads where the length of the center of weights L remains unchanged, but the mass
m is variable.  The linearized equations become
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Realistic values of parameters of a full scale system are
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Values of the parameters for a small scale model built using Lego Mindstorms are, in-
stead
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The block diagram of the extended system is presented in the next figure.  An input
disturbance w on the actuator has been added, The variability of the mass has been as-
sumed as uncertainty represented by the four disturbance-objective pairs

4141 :: zzww − , a performance has bee imposed on the regulation errors of position  s
and angle ϑ   using the weighting function 1W :
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We assume to measure s  and ϑ .
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Fig. 10.5 Block diagram of the full scale Segway model

The whole design is centered on the robust stability at the change of load.  It can be
verified that if the coefficients of the weighting function of the figure are adopted the
closed loop extended system ∞H  norm is 20 dB. Structuring the extended system the
norm is –5 dB, this guaranteed robustness.
The coefficients of the diagonal of the structuring matrix D are:

{ }152.1065.0004.08.107.01.205.0diagD =
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Fig. 10.6 Closed loop extended system without and with structuring

10.3 Non interactive control

This is a classical problem in multivariable controls. Let be a MIMO system with as
many inputs as outputs interacting each other.  We desire a closed loop control such that
each output is controlled by just one reference independently from the others. The
problem is cast in a two degree of freedom design where the multivariable desGeq  is
constituted by a parallel of independent subsystems.
A two input- two output  model is
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The extended system built on the model is represented in the next figure
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Fig. 10.7 Non-interacting control

A loop frequency band of about 1 rad/sec is required, assuming a weighting function 1W
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The presence of poles at the origin will guarantee the steady state gains of the closed
loop.  The selected 

desGeq  is given by the equations
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The four transfer functions in closed loop resulting from the design are shown in the
next figure
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Fig. 10.8 Reference-output relationships in closed loop

The residual interaction between cross inputs and outputs has a gain below -45 dB.

10.4 Control of a hydroelectric plant

This section studies the control for opening and closing the valve of the turbine in a
hydroelectric plant.
The characterizing aspect of this example is represented by the nonlinear dynamics that
links gradient of pressure and flow in the model.

10.4.1 The model

The dynamics of the system shown in figure 10.9 is given by the following equations
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Fig. 10.9 The process
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where )(tq  is the flow in the forced conduct;
)(1 tz  is the water level in the dam;

)(tz  is the water level in the piezometric well;
[ ]10);( ÷tu  is the output flow to control;

)(2 tz  is the pressure expressed in level of water at the base of the piezometric well;
We assume the following values of the parameters

5)(;1;1;4.0;3 3211 ===== zFkkkz .

We maneuver the output valve, opening it [ ]10);( →tu  with initial conditions
3)0(;0)0( == zq , or closing it [ ]01);( →tu  with initial conditions
....2)0(;1)0( == zq (the final conditions resulting form the previous maneuver).

The dynamics of the system is poorly damped.  We introduce a feedback control of the
output flow )(tu  measuring outputs )(),(2 tztz  to assist in the maneuver.
We first approach robust stability using a linear control substituting nonlinearities with
multiplicative uncertainty.
Verified that in the transients

1)()(;4.1)( ≤−≤ tutqtq

equations (10.22) translate in
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with 1,1 21 <∆<∆
∞∞

.  The block diagram representing the model with multiplicative
uncertainties is contained in figure 10.10

Fig. 10.10 Nominal model and uncertainties

Uncertainty on the water level in the dam is represented by an integrator with a small
input noise, The action on the valve is composed of two additive terms: the open loop
maneuver to open and close (0-1-0) plus a feedback controlled term c.  The open loop
control action is modeled as a disturbance and represented with an integrator followed
by a time constant accounting for reasonable maneuvering times.  Multiplicative uncer-
tainties resulting from the linearizations are represented by two disturbance-objective
pairs 022011 , zwzw −− .

10.4.2 Design

The available measures are 2z  and z  with added measurement noises.
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We close a control loop with constraints on the variations of z  and on the control activ-
ity c .
Performance indices are assigned to z  through the weighting function 1W  and to c
through the weighting function uW .
As the variations of z  are of interest only during the transient, 1W  has a zero at the
origin, viceversa, as the feedback control acts only during the transient uW  has a pole at
the origin.

1W

uW

Fig. 10.11 The performance weighting functions

The resulting extended system is presented in the following figure
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Fig. 10.12 The extended system representing nominal model and performances

The closed loop controlled system appears in figure 10.13.
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Fig. 10.13 Controlled system

Nominal responses of opening and closing maneuvers minimizing the norm 2H  of the
extended system 10.12 with feedback from the outputs  are in the next figure

1W

uW

Fig. 10.14 Water level in the piezometric well
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The result guarantees the robust stability, but is not insensitive to uncertainties.  Re-
sponses for extreme values of 21, ∆∆  are the following

Fig. 10.15 Water level in the piezometric well in the presence of uncertainty

We modify the extended system accounting for uncertainties and performances, the
design is performed minimizing the ∞H  norm.
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Fig. 10.16 Extended system encompassing performances and uncertainty

Let compare the closed loop operators 020121 ,, zzww →  showing robust stability indices
of the two projects

2H

∞H

Fig. 10.17 Maximum singular values of the closed loop uncertainty operators
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The next two graphics show the responses closing the valve in nominal conditions and
for an extreme value of the uncertainty

Fig. 10.18 Water level - closure – nominal and perturbed conditions

Fig. 10.19 Water level - opening – nominal and perturbed conditions

Let compare the previous results based on a linear model with the real response using
the same control with the nonlinear model
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Fig. 10.20 Water level and flow opening maneuver – nonlinear system
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Fig. 10.21 Water level and flow closing maneuver – nonlinear system

10.4.3 Conclusions

In the examples of this section we have approached a strongly nonlinear plant modeling
nonlinearity with multiplicative uncertainty. The maneuver of opening or closing the
water valve has been modeled as an additive disturbance followed by an integrator. The
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objective has been a compromise between control activity and variation of the water
level in the piezometric well during the transient. The ∞H  norm of the closed loop un-
certainty operator has been assumed as a measure of closed sensitivity to nonlinearity.
The results show the superiority of robust control with respect to a control based only on
the nominal model.

10.5 Two level position control

The problem is a precision longitudinal positioning with a two layers actuator based on
electrical linear motors: the first layer to approach the target with a course precision, a
lower frequency band and large excursion, the second layer, supported by the first one,
for accurate tracking with greater band and accuracy, but limited excursion.

10.5.1 The model

The system is characterized by two slides driven by two linear electrical motors, the
second slide mounted on top of the first one. The upper slide, with a smaller mass and
reduced excursion supports directly the end effector with the objective to track fast
variations of a reference target. The lower slide, supports the previous one is slower and
maintains it near the target.

1x

2x
2m

1m
2F

1F

r

Fig. 10.22 Two layers mechanical positioning system

The equations of the behavior of the mechanical parts are the following:
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The electrical motors driving the masses have a variable gain factor modeled as multi-
plicative uncertainty
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parasitic dynamics at higher frequencies are present on each motor (servo1 e servo2)
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These dynamics will be represented as uncertainty
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The first mass is subject to an external force disturbance 11W , the two masses exchange a
second force disturbance 12W .  The extended system describing nominal model and
uncertainty is described in the next block diagram

Fig. 10.23 Extended system of model and uncertainty

10.5.2 Requirements

The feedback control will be implemented measuring the position of the lower slide, and
the relative position between the two slides.
Desired specifications require insensitivity of the end effector position from external
disturbances and insensitivity of the closed loop function to uncertainty with significant
attenuation (-20dB) up to 10 rad/s. The closed loop system response must have the ap-
proximate transfer function



298 Automatic control
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Activities of the two controls and excursion of the signal 12 xx − , representing the rela-
tive position of the two slides, have to be limited.
As no precise requirements have been done, we have to preliminarily design an extended
system and then to iterate on the weighting functions. We suggest the following steps.

Robust stability

Using the basic model with tentative weights on control and on output regulation we
verify preliminarily robust stability. To do this we have conducted on this model a
structured analysis on the uncertainty. As result we have established the coefficients that
appear on the basic system 10.23.

Robustness and sensitivity

At the second step we assign sensitivity specification and we verify robust performance.
We have adopted weighting function for sensitivity performances of the type

( )10
1000)(1 +

=
ss

sW (10.27)

adding fictitiously a disturbance on the output to weight sensitivity

Fig. 10.24 Extended system with objective on the sensitivity

The best result carries to the following sensitivity function
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Fig. 10.25 Sensitivity function

Robust performance do not allow to reach the objective of 10 rad/s, as desired, but only
3 rad/s.

Reference tracking

The third step is devoted to reference tracking. We assign as weighting function of the
tracking error the function 

s
sWy

1)( = .  It has the purpose to guarantee steady state gain

strictly equal to requirements, with a weighting gain reaching 1 at 1rad/sec (we expect to
replicate the desired closed loop response up to 1rad/s).
Moreover, to penalize too large relative excursions between the two slides and maintain
it near the center position at steady state, the signal 12 xx −  is added to the objectives

with weight 
s

sWy
1.0)(

2
= .

The revised extended system is the following
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Fig. 10.26 Extended system with requirements on the tracking error

Responses resulting from a step of the reference are reported in the next figure
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Fig. 10.27 Step response to a step – end effector, first and second slide

You will note that reference and output are very close, the slower slide reaches the
steady state position, the faster response of the second slide contributes to the output in
the transient, going to zero in the center of the first slide at steady state.
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Fig. 10.28 Control activity of the two motors

During the previous step response are reported also the control activities of the two
motors.
Sensitivity is, however, not completely satisfactory.
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Fig. 10.29 Sensitivity

Digital control

To approach digital control we have sampled with a Z.O.H. the extended system 9.19.
We tested a sampling period of 10 ms and 1 ms.
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In both cases robust stability was reached marginally, as shown by the figure.

10-2 10-1 100 101 102 103 104
10-1

100

101

Fig. 10.30 Index of robust stability

Performances are, however, similar in the two cases. For a comparison with the analog
system we consider here the design with sampling period of 1 ms.
The closed loop poles resulting from the synthesis in the continuous case are



Examples of control 303

0.433-      0.25-        
0.433;       0.25-        
0.433;-      0.25-        
0.433;       0.25-        
0;           0            
0.268;-      0.202-       
0.268;       0.202-       

0;           0.447-       
1.16;-       0.842-       
1.16;        0.842-       
0;           1.81-        
0;           13.3-        
0;           200-         
0;           200-         
0;           24.7-        

14.3;-       14.3-        
14.3;        14.3-        

0;           200-         
0;           200-         

45.2;-       45.2-        
45.2;        45.2-        
0;           0            

(10.28)

The closed loop poles in the discrete case are
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0.433-      0.25-       1           0.000433-   1            
0.433;       0.25-       1           0.000433    1            

0;           0           1           0           1            
0.433;-      0.25-       1           0.000433-   1            

0.433;       0.25-       1           0.000433    1            
0.261;-      0.217-      1           0.000261-   1            

0.261;       0.217-      1           0.000261    1            
0;           0.455-      1           0           1            

1.19;-       0.832-      0.999       0.00119-    0.999        
1.19;        0.832-      0.999       0.00119     0.999        

0;           1.75-       0.998       0           0.998        
0;           10.5-       0.99        0           0.99         

0;           200-        0.819       0           0.819        
0;           19.6-       0.981       0           0.981        
0;           200-        0.819       0           0.819        
0;           200-        0.819       0           0.819        
14.3;-       14.3-       0.986       0.0141-     0.986        

14.3;        14.3-       0.986       0.0141      0.986        
0;           200-        0.819       0           0.819        

45.2;-       45.2-       0.956       0.0432-     0.955        
45.2;        45.2-       0.956       0.0432      0.955        

0;           0           1           0           1            
 

omega       sigma   modimag  real

(10.29)

Poles of the controller in the continuous case are

0.433-      0.25-        
0.433;       0.25-        
0;           0            
0;           0            
0;           15-          
0;           30.8-        

14.8;-       13.9-        
14.8;        13.9-        
45.8;-       43.9-        
45.8;        43.9-        

(10.30)

in the discrete case are
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0           0           1           0           1            
0;           0           1           0           1            

0.424;-      0.26-       1           0.000424-   1            
0.424;       0.26-       1           0.000424    1            

0;           12.2-       0.988       0           0.988        
0;           25-         0.975       0           0.975        

14.6;-       13.9-       0.986       0.0144-     0.986        
14.6;        13.9-       0.986       0.0144      0.986        

45.5;-       44.2-       0.957       0.0435-     0.956        
45.5;        44.2-       0.957       0.0435      0.956         

 
omega       sigma   modimag  real  

(10.31)


