


Appendix A2
GRAMIAN COMPUTATIONS

The design approach presented in this book is heavily dependent on gramian computa-
tions, i.e. the solution of Lyapunov equations both in the continuous and in the discrete
case.
This issue is classical in the modern control theory. Nevertheless we found frequently
numerical problems in the development of our algorithms using the various available
techniques, especially when coping with non completely observable or controllable
systems and singular gramian matrices [1]. Instead, the most robust approaches for
solving the Lyapunov equations, that we experimented during our development  and that
finally adopted in our framework are described here. The first approach, we think is
original, determines a cholesky factor of the gramian through orthogonal factorization.
The second one use Linear Matrix Inequality (LMI).
Sincerely LMI appears the most powerful, coping easily with nearly singular problems
and incorporating not only gramian computations but also ∞H  norm bound checking,
and frequency constraints on the closed loop dynamics, however it sometime fails. So
we resorted to integrate the two approaches in order to be able to reach always a solu-
tion.

A2.1 Gramian computation through orthogonal factorization

Let the Lyapunov equation with the gramian in a factorized form be

0=′+′+′′ DDRARRRA (A2.1)

where R is a triangular factor of the gramian P, and D, as well, is a triangular factor of
the constant matrix Q.
Transforms equation (A2.1) completing the square form in:
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that can be, also, written as
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Then, observe that, unless a left orthogonal transformation, the following two matrices
are similar
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Based on (A2.4) the following recursive algorithm can be built on R, starting from an
initial value 0R :
At iteration i, with iR , performs the following triangular orthogonal factorization
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were Q is orthogonal and iH  triangular, then compute
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and repeat until convergence.
Similarly, a still simpler algorithm can be used for the discrete time case.

DDRARARR ′+′′=′ (A2.7)
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So, the recursive formula is
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A2.2 Gramian computations through LMI

The idea of using LMI for solving problems involving Lyapunov equations is based on
the following property of monotonicity of the Lyapunov equation.

Property A2.1 Monotonicity if the Lyapunov equation

If there exists a solution of the Lyapunov equation
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i.e. the matrix A represents an asymptotically stable system, then any symmetric
positive semidefinite matrix P satisfying the inequality
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is an upper bound of X:

XP ≥ (A2.12)

In the literature are available numerical algorithms that solve linear programming prob-
lems where semidefinite positive symmetric matrices are involved (Semidefinite Pro-
gramming), so the previous result can be used in different forms to evaluate the gramian,
to find the optimum state feedback minimizing a square norm of the gramian, or guar-
anteeing an upper bound of the closed loop ∞H  operator norm.
In order to have a strong and reliable solution we resorted to use LMI and semidefinte
programming with the following prototypical problem:
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This problem has always a solution, however only if the solution is x=0, then P is an
upper bound of the gramian X. Moreover the variable x is an invaluable indicator of the
gap indicating how far we are from a solution.
The basic problem faced in solving observer or state feedback is minimizing the gramian
of a closed loop system, let consider again the problem (3.34). The closed loop observ-
ability gramian (3.36) can be transformed as follows

( ) ( ) ( ) ( ) 0=−′−+−+′− WDHCDHCWWBHABHAW . (A2.14)

with 1−= XW . Then by introducing  HWY = :

 ( ) ( ) 0=−′−+−+′′−′ DYCWDYCWBYAWBYAW . (A2.15)

This equation can be translated in the following LMI problem
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In a similar way the feedback that guarantees an upper bound of the ∞H  norm of the
closed loop operator can be formulated as the following LMI
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In certain cases the requirements of the control problem are such that internal stability is
not guarantee, or some of the closed loop poles are not moved enough inside the stabil-
ity region. The LMI formulation allows to add constraints to regions of the achieved
closed loop poles. We found especially useful to assign bounds to the minimum accept-
able frequency for the closed loop poles. The inequality to be added to (A2.17) is the
following:

( ) ( ) 022 ≤−−++′′−+′ IxYBPIABYIAP αα (A2.18)

It ensures that the minimum real part of any closed loop pole is greater than α .
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